Teaching Atmospheric Chemistry through Interactive Computational Modeling: An Innovative Approach with JupyterHub, JupyterLab, and BOXMOX
Main Article Content
Abstract
This article presents an innovative methodology for teaching atmospheric chemistry at the undergraduate level through interactive computational modeling. Using tools such as JupyterHub/JupyterLab, BOXMOX, and AWK/Python scripts, students simulate urban emission scenarios and meteorological variations to analyze tropospheric ozone formation, the role of nitrogen oxides (NOx), and their interaction with volatile organic compounds (VOCs). The exercises consider changes in both emissions and meteorological conditions to assess ozone sensitivity to these factors. Students apply computational tools and present simulation results, fostering group discussions that reinforce theoretical knowledge. The methodology demonstrates that accessible computational tools promote active learning, develop computational thinking, address real-world problems such as urban pollution, and facilitate self-assessment and collaborative analysis. Implemented in the Bachelor’s program in Earth Sciences, this approach prepares students to tackle environmental challenges with scientific rigor and modern technologies.
Article Details
Citas en Dimensions Service
References
Ari, N., y Ustazhanov, M. (2014). Matplotlib in python. 2014 11th International Conference on Electronics, Computer and Computation (ICECCO), DOI: https://doi.org/10.1109/ICECCO.2014.6997585
Atkinson, R. (2000). Atmospheric chemistry of VOCs and NOx. Atmospheric Environment, 34(12), 2063-2101. https://doi.org/https://doi.org/10.1016/S1352-2310(99)00460-4 DOI: https://doi.org/10.1016/S1352-2310(99)00460-4
Brasseur, G. P., y Jacob, D. J. (2017). Modeling of atmospheric chemistry. Cambridge University Press. https://doi.org/doi.org/10.1017/9781316544754 DOI: https://doi.org/10.1017/9781316544754
Brasseur, G. P., Orlando, J. J., y Tyndall, G. S. (1999). Atmospheric chemistry and global change (Vol. 654). Oxford university press New York.
Council, N. R. (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. National Academy of Sciences.
Damian, V., Sandu, A., Damian, M., Potra, F., y Carmichael, G. R. (2002). The kinetic preprocessor KPP-a software environment for solving chemical kinetics. Computers & Chemical Engineering, 26(11), 1567-1579. DOI: https://doi.org/10.1016/S0098-1354(02)00128-X
Emmons, L. K., Walters, S., Hess, P. G., Lamarque, J.-F., Pfister, G. G., Fillmore, D.,…Laepple, T. (2010). Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4). Geoscientific Model Development, 3(1), 43-67. DOI: https://doi.org/10.5194/gmd-3-43-2010
Farman, J. C., Gardiner, B. G., y Shanklin, J. D. (1985). Large losses of total ozone in Antarctica reveal seasonal ClO x/NO x interaction. Nature, 315(6016), 207-210. DOI: https://doi.org/10.1038/315207a0
Finlayson-Pitts, B. J., y Pitts Jr, J. N. (1999). Chemistry of the upper and lower atmosphere: theory, experiments, and applications. Elsevier.
Gipson, G., Freas, W., Kelly, R., y Meyer, E. (1980). Guideline for use of city-specific EKMA in preparing ozone SIPS. Draft report (PB-81-118739). EPA. https://www.osti.gov/biblio/6424732
Granger, B. E., y Pérez, F. (2021). Jupyter: Thinking and storytelling with code and data. Computing in Science & Engineering, 23(2), 7-14. DOI: https://doi.org/10.1109/MCSE.2021.3059263
Griebeler, C. H., Passos, C. G., y Pazinato, M. S. Peer instruction in chemistry classes: systematic review on contributions and possibilities. Educación Química, 35(4), 108-126. DOI: https://doi.org/10.22201/fq.18708404e.2024.4.86704
Hidalgo, J. F. R., Atariguana, E. E. C., Yungan, J. A. C., y Rodríguez, S. H. T. (2024). Métodos Educativos Innovadores para la Enseñanza de Química. Polo del Conocimiento, 9(6), 224-239.
Jacob, D. J. (2025). Introduction to Atmospheric Chemistry (2nd ed.). Princeton University Press.
Jupyter, P. (2024). Jupyter: Open source, interactive computing. https://jupyter.org
Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B., Bussonnier, M., Frederic, J.,…Corlay, S. (2016). Jupyter development team. Jupyter notebooks. a publishing format for reproducible computational workflows. In ELPUB, 16, 87-90.
Knote, C. (2022). Run BOXMOX experiments online. Medizinische Biophysik, Bioengineering und Systemtheorie, Universität. Retrieved 12/01/2025 from https://mbees.med.uni-augsburg.de/boxmodeling/run_online.html
Knote, C., Tuccella, P., Curci, G., Emmons, L., Orlando, J. J., Madronich, S.,…Zhang, Y. (2015). Influence of the choice of gas-phase mechanism on predictions of key gaseous pollutants during the AQMEII phase-2 intercomparison. Atmospheric Environment, 115, 553-568. https://doi.org/https://doi.org/10.1016/j.atmosenv.2014.11.066 DOI: https://doi.org/10.1016/j.atmosenv.2014.11.066
McKinney, W. (2015). Pandas, python data analysis library. URL http://pandas. pydata. org, 3-15.
Meroni, G., Copello, M. I., y Paredes, J. (2015). Enseñar química en contexto. Una dimensión de la innovación didáctica en educación secundaria. Educación química, 26(4), 275-280. DOI: https://doi.org/10.1016/j.eq.2015.07.002
NCAR. (2015). BOXMOX - box model extensions to KPP. U.S. National Science Foundation. https://www2.acom.ucar.edu/modeling/boxmox-box-model-extensions-kpp
Prince, M. (2004). Does active learning work? A review of the research. Journal of engineering education, 93(3), 223-231. DOI: https://doi.org/10.1002/j.2168-9830.2004.tb00809.x
Seinfeld, J. H., y Pandis, S. N. (2016). Atmospheric chemistry and physics: from air pollution to climate change (3rd ed.). John Wiley & Sons.
Sillman, S., y He, D. (2002). Some theoretical results concerning O3-NOx-VOC chemistry and NOx-VOC indicators. Journal of Geophysical Research: Atmospheres, 107(D22), ACH 26-21-ACH 26-15. https://doi.org/10.1029/2001JD001123 DOI: https://doi.org/10.1029/2001JD001123
Villarejo, A. L. D. (2013). NOx COV y CFC: química de formación y destrucción del ozono atmosférico. Real Academia Nacional de Farmacia.
Vásquez Acevedo, H. M., Licona Suarez, L. J., y Felizzola Medina, L. D. (2023). Pensamiento Computacional: una competencia del siglo XXI: Revisión sistemática en Scopus. Revista Latinoamericana Ogmios, 4(9), 1 - 16. https://doi.org/10.53595/rlo.v4.i9.090 DOI: https://doi.org/10.53595/rlo.v4.i9.090
Wesely, M., y Hicks, B. (2000). A review of the current status of knowledge on dry deposition. Atmospheric environment, 34(12-14), 2261-2282. DOI: https://doi.org/10.1016/S1352-2310(99)00467-7

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Educación Química por Universidad Nacional Autónoma de México se distribuye bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivar 4.0 Internacional.
Basada en una obra en http://www.revistas.unam.mx/index.php/req.