Proteínas de novo: del diseño a la funcionalización
Conteúdo do artigo principal
Resumo
El diseño de proteínas de novo es un campo innovador con aplicaciones relevantes en medicina y biotecnología. Consiste en crear proteínas “desde cero”, con secuencias de aminoácidos completamente distintas a las presentes en la naturaleza. Este trabajo presenta la evolución del campo, desde sus inicios con el diseño minimalista y racional en los años ochenta, hasta el uso de modelos de lenguaje basados en aprendizaje profundo. El objetivo principal es ofrecer a estudiantes de licenciatura y posgrado un panorama general sobre los avances en el diseño de proteínas de novo y su vínculo con el plegamiento y la funcionalidad proteica.
Detalhes do artigo
Citas en Dimensions Service
Referências
Anfinsen, C. B. (1973). Principles that govern the folding of protein chains. Science, 181(4096), 223–230. https://doi.org/10.1126/science.181.4096.223 DOI: https://doi.org/10.1126/science.181.4096.223
Beck, J., Shanmugaratnam, S., y Höcker, B. (2024). Diversifying de novo TIM barrels by hallucination. Protein Science, 33(6), e5001. https://doi.org/10.1002/pro.5001 DOI: https://doi.org/10.1002/pro.5001
Beck, M., Schmidt, A., Malmstroem, J., Claassen, M., Ori, A., Szymborska, A., Herzog, F., Rinner, O., Ellenberg, J., y Aebersold, R. (2011). The quantitative proteome of a human cell line. Molecular Systems Biology, 7(1), 549. https://doi.org/10.1038/msb.2011.82 DOI: https://doi.org/10.1038/msb.2011.82
Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., y Bourne, P. E. (2000). The protein data bank. Nucleic Acids Research, 28(1), 235–242. https://doi.org/10.1093/nar/28.1.235 DOI: https://doi.org/10.1093/nar/28.1.235
Boyken, S. E., Benhaim, M. A., Busch, F., Jia, M., Bick, M. J., Choi, H., Klima, J. C., Chen, Z., Walkey, C., Mileant, A., Sahasrabuddhe, A., Hodge, E. A., Byron, S., Quijano-Rubio, A., Sankaran, B., King, N. P., Lippincott-Schwartz, J., Wysocki, V. H., ... y Baker, D. (2019). De novo design of tunable, pH-driven conformational changes. Science, 364(6441), 658–664. https://doi.org/10.1126/science.aav7897 DOI: https://doi.org/10.1126/science.aav7897
Burke, A. J., Lovelock, S. L., Frese, A., Crawshaw, R., Ortmayer, M., Dunstan, M., Levy, C., y Green, A. P. (2019). Design and evolution of an enzyme with a non-canonical organocatalytic mechanism. Nature, 570(7760), 219–223. https://doi.org/10.1038/s41586-019-1262-8 DOI: https://doi.org/10.1038/s41586-019-1262-8
Burley, S. K., Bhatt, R., Bhikadiya, C., Bi, C., Biester, A., Biswas, P., Bittrich, S., Blaumann, S., Brown, R., Chao, H., Chithari, V. R., Craig, P. A., Crichlow, G. V., Duarte, J. M., Dutta, S., Feng, Z., Flatt, J. W., Ghosh, S., Goodsell, D. S., ... y Zardecki, C. (2025). Updated resources for exploring experimentally-determined PDB structures and Computed Structure Models at the RCSB Protein Data Bank. Nucleic Acids Research, 53(D1), D564–D574. https://doi.org/10.1093/nar/gkae1091 DOI: https://doi.org/10.1093/nar/gkae1091
Burton, A. J., Thomson, A. R., Dawson, W. M., Brady, R. L., y Woolfson, D. N. (2016). Installing hydrolytic activity into a completely de novo protein framework. Nature Chemistry, 8(9), 837–844. https://doi.org/10.1038/nchem.2555 DOI: https://doi.org/10.1038/nchem.2555
Caldwell, S. J., Haydon, I. C., Piperidou, N., Huang, P. S., Bick, M. J., Sjöström, H. S., Hilvert, D., Baker, D., y Zeymer, C. (2020). Tight and specific lanthanide binding in a de novo TIM barrel with a large internal cavity designed by symmetric domain fusion. Proceedings of the National Academy of Sciences, 117(48), 30362–30369. https://doi.org/10.1073/pnas.2008535117 DOI: https://doi.org/10.1073/pnas.2008535117
Cao, L., Goreshnik, I., Coventry, B., Case, J. B., Miller, L., Kozodoy, L., Chen, R. E., Carter, L., Walls, A. C., Park, Y. J., Strauch, E. M., Stewart, L., Diamond, M. S., Veesler, D., y Baker, D. (2020). De novo design of picomolar SARS-CoV-2 miniprotein inhibitors. Science, 370(6515), 426–431. https://doi.org/10.1126/science.abd9909 DOI: https://doi.org/10.1126/science.abd9909
Chen, Z., Boyken, S. E., Jia, M., Busch, F., Flores-Solis, D., Bick, M. J., Lu, P., VanAernum, Z. L., Sahasrabuddhe, A., Langan, R. A., Bermeo, S., Brunette, T. J., Mulligan, V. K., Carter, L. P., DiMaio, F., Sgourakis, N. G., Wysocki, V. H., y Baker, D. (2019). Programmable design of orthogonal protein heterodimers. Nature, 565(7737), 106–111. https://doi.org/10.1038/s41586-018-0802-y DOI: https://doi.org/10.1038/s41586-018-0802-y
Chevalier, A., Silva, D. A., Rocklin, G. J., Hicks, D. R., Vergara, R., Murapa, P., Bernard, S. M., Zhang, L., Lam, K. H., Yao, G., Bahl, C. D., Miyashita, S. I., Goreshnik, I., Fuller, J. T., Koday, M. T., Jenkins, C. M., Colvin, T., Carter, L., Bohn, A., ... y Baker, D. (2017). Massively parallel de novo protein design for targeted therapeutics. Nature, 550(7674), 74–79. https://doi.org/10.1038/nature23912 DOI: https://doi.org/10.1038/nature23912
Chu, A. E., Lu, T., y Huang, P. S. (2024). Sparks of function by de novo protein design. Nature Biotechnology, 42(2), 203–215. https://doi.org/10.1038/s41587-024-02133-2 DOI: https://doi.org/10.1038/s41587-024-02133-2
Dahiyat, B. I., y Mayo, S. L. (1997). De novo protein design: Fully automated sequence selection. Science, 278(5335), 82–87. https://doi.org/10.1126/science.278.5335.82 DOI: https://doi.org/10.1126/science.278.5335.82
Dahiyat, B. I., Sarisky, C. A., y Mayo, S. L. (1997). De novo protein design: Towards fully automated sequence selection. Journal of Molecular Biology, 273(4), 789–796. https://doi.org/10.1006/jmbi.1997.1341 DOI: https://doi.org/10.1006/jmbi.1997.1341
Dawson, W. M., Rhys, G. G., y Woolfson, D. N. (2019). Towards functional de novo designed proteins. Current Opinion in Chemical Biology, 52, 102–111. https://doi.org/10.1016/j.cbpa.2019.06.011 DOI: https://doi.org/10.1016/j.cbpa.2019.06.011
DeGrado, W. F., Wasserman, Z. R., y Lear, J. D. (1989). Protein design, a minimalist approach. Science, 243(4891), 622–628. https://doi.org/10.1126/science.2464850 DOI: https://doi.org/10.1126/science.2464850
Desjarlais, J. R., y Handel, T. M. (1995). De novo design of the hydrophobic cores of proteins. Protein Science, 4(10), 2006–2018. https://doi.org/10.1002/pro.5560041006 DOI: https://doi.org/10.1002/pro.5560041006
Desjarlais, J. R., y Handel, T. M. (1995b). New strategies in protein design. Current Opinion in Biotechnology, 6(4), 460–466. https://doi.org/10.1016/0958-1669(95)80076-X DOI: https://doi.org/10.1016/0958-1669(95)80076-X
Dill, K. A. (1990). Dominant forces in protein folding. Biochemistry, 29(31), 7133–7155. https://doi.org/10.1021/bi00483a001 DOI: https://doi.org/10.1021/bi00483a001
Dill, K. A., y Chan, H. S. (1997). From Levinthal to pathways to funnels. Nature Structural Biology, 4(1), 10–19. https://doi.org/10.1038/nsb0197-10 DOI: https://doi.org/10.1038/nsb0197-10
Dou, J., Vorobieva, A. A., Sheffler, W., Doyle, L. A., Park, H., Bick, M. J., Mao, B., Foight, G. W., Lee, M. Y., Gagnon, L. A., Carter, L., Sankaran, B., Ovchinnikov, S., Marcos, E., Huang, P. S., Vaughan, J. C., Stoddard, B. L., y Baker, D. (2018). De novo design of a fluorescence-activating β-barrel. Nature, 561(7724), 485–491. https://doi.org/10.1038/s41586-018-0509-0 DOI: https://doi.org/10.1038/s41586-018-0509-0
Doyle, L., Hallinan, J., Bolduc, J., Parmeggiani, F., Baker, D., Stoddard, B. L., y Bradley, P. (2015). Rational design of α-helical tandem repeat proteins with closed architectures. Nature, 528(7583), 585–588. https://doi.org/10.1038/nature16191 DOI: https://doi.org/10.1038/nature16191
Fallas, J. A., Ueda, G., Sheffler, W., Nguyen, V., McNamara, D. E., Sankaran, B., Pereira, J. H., Parmeggiani, F., Brunette, T. J., Cascio, D., Yeates, T. R., Zwart, P., y Baker, D. (2017). Computational design of self-assembling cyclic protein homo-oligomers. Nature Chemistry, 9(4), 353–360. https://doi.org/10.1038/nchem.2673 DOI: https://doi.org/10.1038/nchem.2673
Handel, T., y DeGrado, W. F. (1990). De novo design of a Zn²⁺-binding protein. Journal of the American Chemical Society, 112(18), 6710–6711. https://doi.org/10.1021/ja00174a039 DOI: https://doi.org/10.1021/ja00174a039
Huang, P. S., Boyken, S. E., y Baker, D. (2016). The coming of age of de novo protein design. Nature, 537(7620), 320–327. https://doi.org/10.1038/nature19946 DOI: https://doi.org/10.1038/nature19946
Huang, P. S., Feldmeier, K., Parmeggiani, F., Fernandez Velasco, D. A., Höcker, B., y Baker, D. (2016b). De novo design of a four-fold symmetric TIM-barrel protein with atomic-level accuracy. Nature Chemical Biology, 12(1), 29–34. https://doi.org/10.1038/nchembio.1966 DOI: https://doi.org/10.1038/nchembio.1966
Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., … y Hassabis, D. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583–589. https://doi.org/10.1038/s41586-021-03819-2 DOI: https://doi.org/10.1038/s41586-021-03819-2
Khakzad, H., Igashov, I., Schneuing, A., Goverde, C., Bronstein, M., y Correia, B. (2023). A new age in protein design empowered by deep learning. Cell Systems, 14(11), 925–939. https://doi.org/10.1016/j.cels.2023.10.006 DOI: https://doi.org/10.1016/j.cels.2023.10.006
King, N. P., Bale, J. B., Sheffler, W., McNamara, D. E., Gonen, S., Gonen, T., Yeates, T. O., y Baker, D. (2014). Accurate design of co-assembling multi-component protein nanomaterials. Nature, 510(7503), 103–108. https://doi.org/10.1038/nature13404 DOI: https://doi.org/10.1038/nature13404
Koch, J. S., Romero‐Romero, S., y Höcker, B. (2024). Stepwise introduction of stabilizing mutations reveals nonlinear additive effects in de novo TIM barrels. Protein Science, 33(3), e4926. https://doi.org/10.1002/pro.4926 DOI: https://doi.org/10.1002/pro.4926
Koga, N., Tatsumi-Koga, R., Liu, G., Xiao, R., Acton, T. B., Montelione, G. T., y Baker, D. (2012). Principles for designing ideal protein structures. Nature, 491(7423), 222–227. https://doi.org/10.1038/nature11600 DOI: https://doi.org/10.1038/nature11600
Kolodny, R., Pereyaslavets, L., Samson, A. O., y Levitt, M. (2013). On the universe of protein folds. Annual Review of Biophysics, 42(1), 559–582. https://doi.org/10.1146/annurev-biophys-083012-130432 DOI: https://doi.org/10.1146/annurev-biophys-083012-130432
Kordes, S., Romero‐Romero, S., Lutz, L., y Höcker, B. (2022). A newly introduced salt bridge cluster improves structural and biophysical properties of de novo TIM barrels. Protein Science, 31(2), 513–527. https://doi.org/10.1002/pro.4249 DOI: https://doi.org/10.1002/pro.4249
Korendovych, I. V., y DeGrado, W. F. (2020). De novo protein design, a retrospective. Quarterly Reviews of Biophysics, 53, e3. https://doi.org/10.1017/S0033583519000131 DOI: https://doi.org/10.1017/S0033583519000131
Kortemme, T. (2024). De novo protein design—From new structures to programmable functions. Cell, 187(3), 526–544. https://doi.org/10.1016/j.cell.2023.12.028 DOI: https://doi.org/10.1016/j.cell.2023.12.028
Kuhlman, B., Dantas, G., Ireton, G. C., Varani, G., Stoddard, B. L., y Baker, D. (2003). Design of a novel globular protein fold with atomic-level accuracy. Science, 302(5649), 1364–1368. https://doi.org/10.1126/science.1089427 DOI: https://doi.org/10.1126/science.1089427
Leaver-Fay, A., Tyka, M., Lewis, S. M., Lange, O. F., Thompson, J., Jacak, R., Kaufmann, K. W., Renfrew, P. D., Smith, C. A., Sheffler, W., Davis, I. W., Cooper, S., Treuille, A., Mandell, D. J., Richter, F., Ban, Y. E. A., Fleishman, S. J., Corn, J. E., Kim, D. E., ... y Bradley, P. (2011). ROSETTA3: An object-oriented software suite for the simulation and design of macromolecules. In Methods in Enzymology (Vol. 487, pp. 545–574). Academic Press. https://doi.org/10.1016/B978-0-12-381270-4.00019-6 DOI: https://doi.org/10.1016/B978-0-12-381270-4.00019-6
Levinthal, C. (1969). How to fold graciously. Mossbauer Spectroscopy in Biological Systems, 67, 22–24.
Lin, Y. R., Koga, N., Tatsumi-Koga, R., Liu, G., Clouser, A. F., Montelione, G. T., y Baker, D. (2015). Control over overall shape and size in de novo designed proteins. Proceedings of the National Academy of Sciences, 112(40), E5478–E5485. https://doi.org/10.1073/pnas.1509508112 DOI: https://doi.org/10.1073/pnas.1509508112
Lovelock, S. L., Crawshaw, R., Basler, S., Levy, C., Baker, D., Hilvert, D., y Green, A. P. (2022). The road to fully programmable protein catalysis. Nature, 606(7912), 49–58. https://doi.org/10.1038/s41586-022-04456-z DOI: https://doi.org/10.1038/s41586-022-04456-z
Lu, L., Gou, X., Tan, S. K., Mann, S. I., Yang, H., Zhong, X., Gazgalis, D., Valdiviezo, J., Jo, H., Wu, Y., Diolaiti, M. E., Ashworth, A., Polizzi, N. F., y DeGrado, W. F. (2024). De novo design of drug-binding proteins with predictable binding energy and specificity. Science, 384(6691), 106–112. https://doi.org/10.1126/science.adl5364 DOI: https://doi.org/10.1126/science.adl5364
Lu, P., Min, D., DiMaio, F., Wei, K. Y., Vahey, M. D., Boyken, S. E., Chen, Z., Fallas, J. A., Ueda, G., Sheffler, W., Mulligan, V. K., Xu, W., Bowie, J. U., y Baker, D. (2018). Accurate computational design of multipass transmembrane proteins. Science, 359(6379), 1042–1046. https://doi.org/10.1126/science.aaq1739 DOI: https://doi.org/10.1126/science.aaq1739
Mann, S. I., Lin, Z., Tan, S. K., Zhu, J., Widel, Z. X. W., Bakanas, I., Mansergh, J. P., Liu, R., Kelly, M. J. S., Wu, Y., Wells, J. A., Therien, M. J., y DeGrado, W. F. (2025). De novo design of proteins that bind naphthalenediimides, powerful photooxidants with tunable photophysical properties. Journal of the American Chemical Society, 147(9), 7849–7858. https://doi.org/10.1021/jacs.4c18151 DOI: https://doi.org/10.1021/jacs.4c18151
Marcos, E., Chidyausiku, T. M., McShan, A. C., Evangelidis, T., Nerli, S., Carter, L., Nivón, L. G., Davis, A., Oberdorfer, G., Tripsianes, K., Sgourakis, N. G., y Baker, D. (2018). De novo design of a non-local β-sheet protein with high stability and accuracy. Nature Structural & Molecular Biology, 25(11), 1028–1034. https://doi.org/10.1038/s41594-018-0141-6 DOI: https://doi.org/10.1038/s41594-018-0141-6
Pan, X., y Kortemme, T. (2021). Recent advances in de novo protein design: Principles, methods, and applications. Journal of Biological Chemistry, 296, 100558. https://doi.org/10.1016/j.jbc.2021.100558 DOI: https://doi.org/10.1016/j.jbc.2021.100558
Polizzi, N. F., y DeGrado, W. F. (2020). A defined structural unit enables de novo design of small-molecule–binding proteins. Science, 369(6508), 1227–1233. https://doi.org/10.1126/science.abb8330 DOI: https://doi.org/10.1126/science.abb8330
Polizzi, N. F., Wu, Y., Lemmin, T., Maxwell, A. M., Zhang, S. Q., Rawson, J., Beratan, D. N., Therien, M. J., y DeGrado, W. F. (2017). De novo design of a hyperstable non-natural protein–ligand complex with sub-Å accuracy. Nature Chemistry, 9(12), 1157–1164. https://doi.org/10.1038/nchem.2846 DOI: https://doi.org/10.1038/nchem.2846
Regan, L., y Clarke, N. D. (1990). A tetrahedral zinc (II)-binding site introduced into a designed protein. Biochemistry, 29(49), 10878–10883. https://doi.org/10.1021/bi00501a003 DOI: https://doi.org/10.1021/bi00501a003
Rodriguez-Sotres, R., y Aguayo-Ortíz, R. (2025). Desentrañando los secretos de autoensamblado en las máquinas de la vida: plegamiento de proteínas y Nobel de Química 2024. Educación Química, 36(1), 5–13. https://doi.org/10.22201/fq.18708404e.2025.1.89902 DOI: https://doi.org/10.22201/fq.18708404e.2025.1.89902
Romero-Romero, S., Costas, M., Silva Manzano, D. A., Kordes, S., Rojas-Ortega, E., Tapia, C., Guerra, Y., Shanmugaratnam, S., Rodríguez-Romero, A., Baker, D., Höcker, B., y Fernández-Velasco, D. A. (2021). The stability landscape of de novo TIM barrels explored by a modular design approach. Journal of Molecular Biology, 433(18), 167153. https://doi.org/10.1016/j.jmb.2021.167153 DOI: https://doi.org/10.1016/j.jmb.2021.167153
Street, A. G., y Mayo, S. L. (1999). Computational protein design. Structure, 7(5), R105–R109. https://doi.org/10.1016/S0969-2126(99)80062-8 DOI: https://doi.org/10.1016/S0969-2126(99)80062-8
Varadi, M., Bertoni, D., Magana, P., Paramval, U., Pidruchna, I., Radhakrishnan, M., Tsenkov, M., Nair, S., Mirdita, M., Yeo, J., Kovalevskiy, O., Tunyasuvunakool, K., Laydon, A., Žídek, A., Tomlinson, H., Hariharan, D., Abrahamson, J., Green, T., Jumper, J., ... y Velankar, S. (2024). AlphaFold Protein Structure Database in 2024: Providing structure coverage for over 214 million protein sequences. Nucleic Acids Research, 52(D1), D368–D375. https://doi.org/10.1093/nar/gkad1011 DOI: https://doi.org/10.1093/nar/gkad1011
Voet, A. R. D., Noguchi, H., Addy, C., Simoncini, D., Terada, D., Unzai, S., Park, S. Y., Zhang, K. Y. J., y Tame, J. R. H. (2014). Computational design of a self-assembling symmetrical β-propeller protein. Proceedings of the National Academy of Sciences, 111(42), 15102–15107. https://doi.org/10.1073/pnas.1412768111 DOI: https://doi.org/10.1073/pnas.1412768111
Wei, K. Y., Moschidi, D., Bick, M. J., Nerli, S., McShan, A. C., Carter, L. P., Huang, P. S., Fletcher, D. A., Sgourakis, N. G., Boyken, S. E., y Baker, D. (2020). Computational design of closely related proteins that adopt two well-defined but structurally divergent folds. Proceedings of the National Academy of Sciences, 117(13), 7208–7215. https://doi.org/10.1073/pnas.1914808117 DOI: https://doi.org/10.1073/pnas.1914808117
Woolfson, D. N. (2021). A brief history of de novo protein design: Minimal, rational, and computational. Journal of Molecular Biology, 433(20), 167160. https://doi.org/10.1016/j.jmb.2021.167160 DOI: https://doi.org/10.1016/j.jmb.2021.167160
Woolfson, D. N., Bartlett, G. J., Burton, A. J., Heal, J. W., Niitsu, A., Thomson, A. R., y Wood, C. W. (2015). De novo protein design: How do we expand into the universe of possible protein structures?. Current Opinion in Structural Biology, 33, 16–26. https://doi.org/10.1016/j.sbi.2015.05.009 DOI: https://doi.org/10.1016/j.sbi.2015.05.009
Yeh, A. H. W., Norn, C., Kipnis, Y., Tischer, D., Pellock, S. J., Evans, D., Ma, P., Lee, G. R., Zhang, J. Z., Anishchenko, I., Coventry, B., Cao, L., Dauparas, J., Halabiya, S., DeWitt, M., Carter, L., Houk, K. N., y Baker, D. (2023). De novo design of luciferases using deep learning. Nature, 614(7949), 774–780. https://doi.org/10.1038/s41586-023-05696-3 DOI: https://doi.org/10.1038/s41586-023-05696-3
Yue, K., y Dill, K. A. (1992). Inverse protein folding problem: Designing polymer sequences. Proceedings of the National Academy of Sciences, 89(9), 4163–4167. https://doi.org/10.1073/pnas.89.9.4163 DOI: https://doi.org/10.1073/pnas.89.9.4163
Zhang, S. Q., Huang, H., Yang, J., Kratochvil, H. T., Lolicato, M., Liu, Y., Shu, X., Liu, L., y DeGrado, W. F. (2018). Designed peptides that assemble into cross-α amyloid-like structures. Nature Chemical Biology, 14(9), 870–875. https://doi.org/10.1038/s41589-018-0105-5 DOI: https://doi.org/10.1038/s41589-018-0105-5

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Educación Química por Universidad Nacional Autónoma de México se distribuye bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivar 4.0 Internacional.
Basada en una obra en http://www.revistas.unam.mx/index.php/req.