Interactive molecular visualization for study situations

Main Article Content

Andressa Ribeiro Pereira
Alba Denise Queiroz Ferreira

Abstract

Structural chemistry can be discussed with aromatic substances by applying digital resources PUBCHEM - chemical information database with interactive 3D structures, SDBS - database of experimental 1H-NMR and IR spectra, NMRDB- simulator of 1H- NMR with artificial intelligence (AI), for the development of interactive activities that promote molecular visualization in study situations (SE). Five substances were selected, four of which form two pairs of structural isomers, one pair with the composition C5H10O2 with distinct functional groups, the isobutyl formate - blackberry aroma and the butyl ethanoate - apple aroma; the second pair has the chemical formula C9H10O2, benzyl acetate – pear aroma and methyl phenylacetate – honey aroma, both molecules having identical functional groups. The combined use of digital resources as learning objects (LOs) for the direct (PUBCHEM) and indirect visualization of chemical structures (NMRDB and SDBS) of these molecules was proposed, exemplifying an introduction to the analysis of 1H-NMR spectra with the AI of the NMRDB simulator, for interactive activities in a SE with structural chemistry in the training (initial or continuing) of chemistry teachers. In addition to providing molecular visualization in the practice of chemistry, the interactive activity presented can contribute to the development of scientific curiosity, argumentation based on facts, among other general skills of the National Common Curricular Base (Base Nacional Comum Curricular -BNCC).

Article Details

Citas en Dimensions Service

Author Biography

Andressa Ribeiro Pereira, UNIMES

Licenciada em Pedagogia por la UNIMES y estudiante de Pedagogía por la UNIMES

References

Atkins, P.; Jones, L. (2006) Princípios de Química: questionando a vida moderna e o meio ambiente. Bookman.

Balaji, R. R. (2022, 10 de julho) Strategies in (-)-Menthol Synthesis. https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Book%3A_Logic_of_Organic_Synthesis_(Rao)/06%3A_Strategies_in_(-)-Menthol_Synthesis.

Banfi, D.; Patiny, L. (2008) www.nmrdb.org: resurrecting and processing NMR spectra on-line. CHIMIA, 62(4), 280 – 281. https://doi.org/10.2533/chimia.2008.280.

Barnea, N.; Dori, Y. J. (1996) Computerized molecular modeling as a tool to improve chemistry teaching. Journal of Chemical Information and Computer Sciences, 36(4), 629 – 636. https://doi.org/10.1021/ci950122o.

Brasil (2022, 10 de julho). BNCC - Base Nacional Comum Curricular. http://basenacionalcomum.mec.gov.br/images/BNCC_EI_EF_110518_versaofinal_site.pdf.

Bonjour, J. L.; Hass, A. L.; Pollock, D. W.; Huebner, A.; Frost, J. A. (2017) Bringing NMR and IR spectroscopy to High Schools. Jounal of Chemical Education, 94(1), 38-43. https://doi.org/10.1021/acs.jchemed.6b00406.

Bruice, P. Y.(2006) Química orgânica (Vol. 1). Pearson Prentice Hall.

Caetano, L. R.; Lindemann, R. H. (2014) Situação de estudo e o Ensino de Química: análise e discussão nos últimos anos das Reuniões Anuais da Sociedade Brasileira de Química (RASBQ). Encontro de Debates sobre o Ensino de Química, 1(1), 97 – 103.

Constantino, M. (2008) Química orgânica: curso básico universitário (Vol. 3). LTC.

Debska, B.; Guzowska-Swider, B. (2017) Molecular structures from 1H NMR spectra: education aided by internet programs. Journal of Chemical Education, 84(3), 556 – 560. https://doi.org/10.1021/ed084p556.

Ferreira, A. D. Q.; Souza, B.; Carvalho, G. H.; Scorpelini, N. C. (2017, 21 e 22 de setembro) NMRDB para atividades interativas investigativas com a informática química (cheminformatic). Anais do WCF, 4, 65 – 72. https://www.cc.faccamp.br/anaisdowcf/edicoes_anteriores/wcf2017/arquivos/11/paper_11.pdf

Gilbert, J. K. (2005) Visualization; a metacognitive skill in science and science education. In: Visualization in science education. Springer, 9-27. https://doi.org/10.1007/1-4020-3613-2_2

Hunter, W. J. F. (2007) Action research as a framework for science education research. In: The theoretical frameworks for research in chemistry/science education. Prentice Hall, 146 – 164.

Jones, L. L.; Kelly, R. M. (2015) Visualization: the key to understanding chemistry concepts. In: Sputnik to smartphones: a half-century of chemistry education. American Chemical Society, 121 – 140.

Johnstone, A. H. (1993) The development of chemistry teaching: a changing response to changing demand. Journal of chemical education, 70(9), 701 – 705. https://doi.org/10.1021/ed070p701.

Kermen, F.; Chakirian, A.; Sezille, C.; Joussain, P.; Le Goff, G.; Ziessel, A.; Chastrette, M.; Mandairon, N.; Didier, A.; Rouby, C.; Bensafi, M. (2016) Molecular complexity determines the number of olfactory notes and the pleasantness of smells. Scientific reports, 1(206), 1-5. https://www.nature.com/articles/srep00206.

Lauxen, A. A.; Vaniel, A. P. H.; Linck, M. R. (2015) Trabalhando com situações de estudo para a construção dos conceitos de Ciências Naturais no ensino fundamental. Qualidade do ensino na educação básica: Contribuições das ciências da natureza, da matemática e de suas tecnologias. 1, 21 – 34.

Leite, B. (2020) Kahoot! E Socrative como recursos para uma aprendizagem tecnológica ativa gamificada no ensino de química. Química Nova na Escola, 42(2), 147 – 156. http://dx.doi.org/10.21577/0104-8899.20160201.

Locatelli, A.; Zoch, A. N.; Trentin, M. A. S. (2015) TICs no ensino de química: um recorte do “estado da arte”. Revista Tecnologias na Educação, 12(7), 1-12. http://tecedu.pro.br/wp-content/uploads/2015/07/Art19-vol12-julho2015.pdf

Maldaner, O. A.; Zanon, L. B. (2007) Currículo contextualizado na área de ciências da natureza e suas tecnologias: a situação de estudo. Fundamentos e propostas de ensino de química para a educação básica no Brasil, 109 – 138.

McMurry, J. (2004) Química orgânica. Thomson Learning.

Merlic, C. A.; Fam, B. C.; Miller, M. M. (2001) WebSpectra: online NMR and IR spectra for students. Journal of Chemical Education, 78(1),118 – 120. https://doi.org/10.1021/ed078p118.

Müller, L. C.; Maldaner, O. A. (2013) Dificuldades constatadas na significação conceitual no ensino de química: Situações de Estudo. Encontro de Debates sobre o Ensino de Química.https://www.publicacoeseventos.unijui.edu.br/index.php/edeq/article/view/2668

NMRDB. Tools for NMR spectrocopists. (2021, 15 de abril) https://www.nmrdb.org/new_predictor/index.shtml?v=v2.121.0.

Oliveira, L. F. C. (2001). Espectroscopia molecular. Cadernos Temáticos de Química Nova na Escola. 4, 24 – 30. http://qnesc.sbq.org.br/online/cadernos/04/espect.pdf.

PUBCHEM. Disponível em: https://pubchem.ncbi.nlm.nih.gov/. Acesso em 15 jan. 2022.

Silva, R. M. G.; Fernandes, M. A.; Nascimento, A.C. (2007) Fundamentos e propostas de ensino de química para a educação básica no Brasil. UNIJUÍ, 220 p.

Saito, T.; Hayamizu, K.; Yanagisawa, M.; Yamamoto, O. (2021, 15 de abril). Spectral Database for Organic Compounds. https://sdbs.db.aist.go.jp/sdbs/cgi-bin/direct_frame_top.cgi.

Sasseron, L. H.; Carvalho, A. M. P. (2011) Alfabetização científica: uma revisão bibliográfica. Investigações em Ensino de Ciências, 16(1), 59 – 77. https://edisciplinas.usp.br/pluginfile.php/844768/mod_resource/content/1/SASSERON_Carvalho_AC_uma_revis%C3%A3o_bibliogr%C3%A1fica.pdf.

Taber, K. S. (2013) Revisiting the chemistry triplet: drawing upon the nature of chemical knowledge and the psychology of learning to inform chemistry education. Chemistry Education Research and Practice, 14(2), 156 – 168. https://doi.org/10.1039/C3RP00012E.

Talanquer, V. (2016) Central ideas in chemistry: an alternative perspective. Journal of Chemical Education, 93(1), 3-8. https://doi.org/10.1021/acs.jchemed.5b00434.

Williamson, V. (2008) The particulate nature of matter: an example of how theory-based research can impact the field. In: Nuts and bolts of chemical education research. American Chemical Society, 67-78. DOI: 10.1021/bk-2008-0976.ch006.