Proteínas de novo: del diseño a la funcionalización

Contenido principal del artículo

Oscar Rodríguez Meza
Miguel Costas Basin
Daniel Alejandro Fernandez Velasco

Resumen

El diseño de proteínas de novo es un campo innovador con aplicaciones relevantes en medicina y biotecnología. Consiste en crear proteínas “desde cero”, con secuencias de aminoácidos completamente distintas a las presentes en la naturaleza. Este trabajo presenta la evolución del campo, desde sus inicios con el diseño minimalista y racional en los años ochenta, hasta el uso de modelos de lenguaje basados en aprendizaje profundo. El objetivo principal es ofrecer a estudiantes de licenciatura y posgrado un panorama general sobre los avances en el diseño de proteínas de novo y su vínculo con el plegamiento y la funcionalidad proteica.

Detalles del artículo

Citas en Dimensions Service

Citas

Anfinsen, C. B. (1973). Principles that govern the folding of protein chains. Science, 181(4096), 223–230. https://doi.org/10.1126/science.181.4096.223 DOI: https://doi.org/10.1126/science.181.4096.223

Beck, J., Shanmugaratnam, S., y Höcker, B. (2024). Diversifying de novo TIM barrels by hallucination. Protein Science, 33(6), e5001. https://doi.org/10.1002/pro.5001 DOI: https://doi.org/10.1002/pro.5001

Beck, M., Schmidt, A., Malmstroem, J., Claassen, M., Ori, A., Szymborska, A., Herzog, F., Rinner, O., Ellenberg, J., y Aebersold, R. (2011). The quantitative proteome of a human cell line. Molecular Systems Biology, 7(1), 549. https://doi.org/10.1038/msb.2011.82 DOI: https://doi.org/10.1038/msb.2011.82

Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., y Bourne, P. E. (2000). The protein data bank. Nucleic Acids Research, 28(1), 235–242. https://doi.org/10.1093/nar/28.1.235 DOI: https://doi.org/10.1093/nar/28.1.235

Boyken, S. E., Benhaim, M. A., Busch, F., Jia, M., Bick, M. J., Choi, H., Klima, J. C., Chen, Z., Walkey, C., Mileant, A., Sahasrabuddhe, A., Hodge, E. A., Byron, S., Quijano-Rubio, A., Sankaran, B., King, N. P., Lippincott-Schwartz, J., Wysocki, V. H., ... y Baker, D. (2019). De novo design of tunable, pH-driven conformational changes. Science, 364(6441), 658–664. https://doi.org/10.1126/science.aav7897 DOI: https://doi.org/10.1126/science.aav7897

Burke, A. J., Lovelock, S. L., Frese, A., Crawshaw, R., Ortmayer, M., Dunstan, M., Levy, C., y Green, A. P. (2019). Design and evolution of an enzyme with a non-canonical organocatalytic mechanism. Nature, 570(7760), 219–223. https://doi.org/10.1038/s41586-019-1262-8 DOI: https://doi.org/10.1038/s41586-019-1262-8

Burley, S. K., Bhatt, R., Bhikadiya, C., Bi, C., Biester, A., Biswas, P., Bittrich, S., Blaumann, S., Brown, R., Chao, H., Chithari, V. R., Craig, P. A., Crichlow, G. V., Duarte, J. M., Dutta, S., Feng, Z., Flatt, J. W., Ghosh, S., Goodsell, D. S., ... y Zardecki, C. (2025). Updated resources for exploring experimentally-determined PDB structures and Computed Structure Models at the RCSB Protein Data Bank. Nucleic Acids Research, 53(D1), D564–D574. https://doi.org/10.1093/nar/gkae1091 DOI: https://doi.org/10.1093/nar/gkae1091

Burton, A. J., Thomson, A. R., Dawson, W. M., Brady, R. L., y Woolfson, D. N. (2016). Installing hydrolytic activity into a completely de novo protein framework. Nature Chemistry, 8(9), 837–844. https://doi.org/10.1038/nchem.2555 DOI: https://doi.org/10.1038/nchem.2555

Caldwell, S. J., Haydon, I. C., Piperidou, N., Huang, P. S., Bick, M. J., Sjöström, H. S., Hilvert, D., Baker, D., y Zeymer, C. (2020). Tight and specific lanthanide binding in a de novo TIM barrel with a large internal cavity designed by symmetric domain fusion. Proceedings of the National Academy of Sciences, 117(48), 30362–30369. https://doi.org/10.1073/pnas.2008535117 DOI: https://doi.org/10.1073/pnas.2008535117

Cao, L., Goreshnik, I., Coventry, B., Case, J. B., Miller, L., Kozodoy, L., Chen, R. E., Carter, L., Walls, A. C., Park, Y. J., Strauch, E. M., Stewart, L., Diamond, M. S., Veesler, D., y Baker, D. (2020). De novo design of picomolar SARS-CoV-2 miniprotein inhibitors. Science, 370(6515), 426–431. https://doi.org/10.1126/science.abd9909 DOI: https://doi.org/10.1126/science.abd9909

Chen, Z., Boyken, S. E., Jia, M., Busch, F., Flores-Solis, D., Bick, M. J., Lu, P., VanAernum, Z. L., Sahasrabuddhe, A., Langan, R. A., Bermeo, S., Brunette, T. J., Mulligan, V. K., Carter, L. P., DiMaio, F., Sgourakis, N. G., Wysocki, V. H., y Baker, D. (2019). Programmable design of orthogonal protein heterodimers. Nature, 565(7737), 106–111. https://doi.org/10.1038/s41586-018-0802-y DOI: https://doi.org/10.1038/s41586-018-0802-y

Chevalier, A., Silva, D. A., Rocklin, G. J., Hicks, D. R., Vergara, R., Murapa, P., Bernard, S. M., Zhang, L., Lam, K. H., Yao, G., Bahl, C. D., Miyashita, S. I., Goreshnik, I., Fuller, J. T., Koday, M. T., Jenkins, C. M., Colvin, T., Carter, L., Bohn, A., ... y Baker, D. (2017). Massively parallel de novo protein design for targeted therapeutics. Nature, 550(7674), 74–79. https://doi.org/10.1038/nature23912 DOI: https://doi.org/10.1038/nature23912

Chu, A. E., Lu, T., y Huang, P. S. (2024). Sparks of function by de novo protein design. Nature Biotechnology, 42(2), 203–215. https://doi.org/10.1038/s41587-024-02133-2 DOI: https://doi.org/10.1038/s41587-024-02133-2

Dahiyat, B. I., y Mayo, S. L. (1997). De novo protein design: Fully automated sequence selection. Science, 278(5335), 82–87. https://doi.org/10.1126/science.278.5335.82 DOI: https://doi.org/10.1126/science.278.5335.82

Dahiyat, B. I., Sarisky, C. A., y Mayo, S. L. (1997). De novo protein design: Towards fully automated sequence selection. Journal of Molecular Biology, 273(4), 789–796. https://doi.org/10.1006/jmbi.1997.1341 DOI: https://doi.org/10.1006/jmbi.1997.1341

Dawson, W. M., Rhys, G. G., y Woolfson, D. N. (2019). Towards functional de novo designed proteins. Current Opinion in Chemical Biology, 52, 102–111. https://doi.org/10.1016/j.cbpa.2019.06.011 DOI: https://doi.org/10.1016/j.cbpa.2019.06.011

DeGrado, W. F., Wasserman, Z. R., y Lear, J. D. (1989). Protein design, a minimalist approach. Science, 243(4891), 622–628. https://doi.org/10.1126/science.2464850 DOI: https://doi.org/10.1126/science.2464850

Desjarlais, J. R., y Handel, T. M. (1995). De novo design of the hydrophobic cores of proteins. Protein Science, 4(10), 2006–2018. https://doi.org/10.1002/pro.5560041006 DOI: https://doi.org/10.1002/pro.5560041006

Desjarlais, J. R., y Handel, T. M. (1995b). New strategies in protein design. Current Opinion in Biotechnology, 6(4), 460–466. https://doi.org/10.1016/0958-1669(95)80076-X DOI: https://doi.org/10.1016/0958-1669(95)80076-X

Dill, K. A. (1990). Dominant forces in protein folding. Biochemistry, 29(31), 7133–7155. https://doi.org/10.1021/bi00483a001 DOI: https://doi.org/10.1021/bi00483a001

Dill, K. A., y Chan, H. S. (1997). From Levinthal to pathways to funnels. Nature Structural Biology, 4(1), 10–19. https://doi.org/10.1038/nsb0197-10 DOI: https://doi.org/10.1038/nsb0197-10

Dou, J., Vorobieva, A. A., Sheffler, W., Doyle, L. A., Park, H., Bick, M. J., Mao, B., Foight, G. W., Lee, M. Y., Gagnon, L. A., Carter, L., Sankaran, B., Ovchinnikov, S., Marcos, E., Huang, P. S., Vaughan, J. C., Stoddard, B. L., y Baker, D. (2018). De novo design of a fluorescence-activating β-barrel. Nature, 561(7724), 485–491. https://doi.org/10.1038/s41586-018-0509-0 DOI: https://doi.org/10.1038/s41586-018-0509-0

Doyle, L., Hallinan, J., Bolduc, J., Parmeggiani, F., Baker, D., Stoddard, B. L., y Bradley, P. (2015). Rational design of α-helical tandem repeat proteins with closed architectures. Nature, 528(7583), 585–588. https://doi.org/10.1038/nature16191 DOI: https://doi.org/10.1038/nature16191

Fallas, J. A., Ueda, G., Sheffler, W., Nguyen, V., McNamara, D. E., Sankaran, B., Pereira, J. H., Parmeggiani, F., Brunette, T. J., Cascio, D., Yeates, T. R., Zwart, P., y Baker, D. (2017). Computational design of self-assembling cyclic protein homo-oligomers. Nature Chemistry, 9(4), 353–360. https://doi.org/10.1038/nchem.2673 DOI: https://doi.org/10.1038/nchem.2673

Handel, T., y DeGrado, W. F. (1990). De novo design of a Zn²⁺-binding protein. Journal of the American Chemical Society, 112(18), 6710–6711. https://doi.org/10.1021/ja00174a039 DOI: https://doi.org/10.1021/ja00174a039

Huang, P. S., Boyken, S. E., y Baker, D. (2016). The coming of age of de novo protein design. Nature, 537(7620), 320–327. https://doi.org/10.1038/nature19946 DOI: https://doi.org/10.1038/nature19946

Huang, P. S., Feldmeier, K., Parmeggiani, F., Fernandez Velasco, D. A., Höcker, B., y Baker, D. (2016b). De novo design of a four-fold symmetric TIM-barrel protein with atomic-level accuracy. Nature Chemical Biology, 12(1), 29–34. https://doi.org/10.1038/nchembio.1966 DOI: https://doi.org/10.1038/nchembio.1966

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., … y Hassabis, D. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583–589. https://doi.org/10.1038/s41586-021-03819-2 DOI: https://doi.org/10.1038/s41586-021-03819-2

Khakzad, H., Igashov, I., Schneuing, A., Goverde, C., Bronstein, M., y Correia, B. (2023). A new age in protein design empowered by deep learning. Cell Systems, 14(11), 925–939. https://doi.org/10.1016/j.cels.2023.10.006 DOI: https://doi.org/10.1016/j.cels.2023.10.006

King, N. P., Bale, J. B., Sheffler, W., McNamara, D. E., Gonen, S., Gonen, T., Yeates, T. O., y Baker, D. (2014). Accurate design of co-assembling multi-component protein nanomaterials. Nature, 510(7503), 103–108. https://doi.org/10.1038/nature13404 DOI: https://doi.org/10.1038/nature13404

Koch, J. S., Romero‐Romero, S., y Höcker, B. (2024). Stepwise introduction of stabilizing mutations reveals nonlinear additive effects in de novo TIM barrels. Protein Science, 33(3), e4926. https://doi.org/10.1002/pro.4926 DOI: https://doi.org/10.1002/pro.4926

Koga, N., Tatsumi-Koga, R., Liu, G., Xiao, R., Acton, T. B., Montelione, G. T., y Baker, D. (2012). Principles for designing ideal protein structures. Nature, 491(7423), 222–227. https://doi.org/10.1038/nature11600 DOI: https://doi.org/10.1038/nature11600

Kolodny, R., Pereyaslavets, L., Samson, A. O., y Levitt, M. (2013). On the universe of protein folds. Annual Review of Biophysics, 42(1), 559–582. https://doi.org/10.1146/annurev-biophys-083012-130432 DOI: https://doi.org/10.1146/annurev-biophys-083012-130432

Kordes, S., Romero‐Romero, S., Lutz, L., y Höcker, B. (2022). A newly introduced salt bridge cluster improves structural and biophysical properties of de novo TIM barrels. Protein Science, 31(2), 513–527. https://doi.org/10.1002/pro.4249 DOI: https://doi.org/10.1002/pro.4249

Korendovych, I. V., y DeGrado, W. F. (2020). De novo protein design, a retrospective. Quarterly Reviews of Biophysics, 53, e3. https://doi.org/10.1017/S0033583519000131 DOI: https://doi.org/10.1017/S0033583519000131

Kortemme, T. (2024). De novo protein design—From new structures to programmable functions. Cell, 187(3), 526–544. https://doi.org/10.1016/j.cell.2023.12.028 DOI: https://doi.org/10.1016/j.cell.2023.12.028

Kuhlman, B., Dantas, G., Ireton, G. C., Varani, G., Stoddard, B. L., y Baker, D. (2003). Design of a novel globular protein fold with atomic-level accuracy. Science, 302(5649), 1364–1368. https://doi.org/10.1126/science.1089427 DOI: https://doi.org/10.1126/science.1089427

Leaver-Fay, A., Tyka, M., Lewis, S. M., Lange, O. F., Thompson, J., Jacak, R., Kaufmann, K. W., Renfrew, P. D., Smith, C. A., Sheffler, W., Davis, I. W., Cooper, S., Treuille, A., Mandell, D. J., Richter, F., Ban, Y. E. A., Fleishman, S. J., Corn, J. E., Kim, D. E., ... y Bradley, P. (2011). ROSETTA3: An object-oriented software suite for the simulation and design of macromolecules. In Methods in Enzymology (Vol. 487, pp. 545–574). Academic Press. https://doi.org/10.1016/B978-0-12-381270-4.00019-6 DOI: https://doi.org/10.1016/B978-0-12-381270-4.00019-6

Levinthal, C. (1969). How to fold graciously. Mossbauer Spectroscopy in Biological Systems, 67, 22–24.

Lin, Y. R., Koga, N., Tatsumi-Koga, R., Liu, G., Clouser, A. F., Montelione, G. T., y Baker, D. (2015). Control over overall shape and size in de novo designed proteins. Proceedings of the National Academy of Sciences, 112(40), E5478–E5485. https://doi.org/10.1073/pnas.1509508112 DOI: https://doi.org/10.1073/pnas.1509508112

Lovelock, S. L., Crawshaw, R., Basler, S., Levy, C., Baker, D., Hilvert, D., y Green, A. P. (2022). The road to fully programmable protein catalysis. Nature, 606(7912), 49–58. https://doi.org/10.1038/s41586-022-04456-z DOI: https://doi.org/10.1038/s41586-022-04456-z

Lu, L., Gou, X., Tan, S. K., Mann, S. I., Yang, H., Zhong, X., Gazgalis, D., Valdiviezo, J., Jo, H., Wu, Y., Diolaiti, M. E., Ashworth, A., Polizzi, N. F., y DeGrado, W. F. (2024). De novo design of drug-binding proteins with predictable binding energy and specificity. Science, 384(6691), 106–112. https://doi.org/10.1126/science.adl5364 DOI: https://doi.org/10.1126/science.adl5364

Lu, P., Min, D., DiMaio, F., Wei, K. Y., Vahey, M. D., Boyken, S. E., Chen, Z., Fallas, J. A., Ueda, G., Sheffler, W., Mulligan, V. K., Xu, W., Bowie, J. U., y Baker, D. (2018). Accurate computational design of multipass transmembrane proteins. Science, 359(6379), 1042–1046. https://doi.org/10.1126/science.aaq1739 DOI: https://doi.org/10.1126/science.aaq1739

Mann, S. I., Lin, Z., Tan, S. K., Zhu, J., Widel, Z. X. W., Bakanas, I., Mansergh, J. P., Liu, R., Kelly, M. J. S., Wu, Y., Wells, J. A., Therien, M. J., y DeGrado, W. F. (2025). De novo design of proteins that bind naphthalenediimides, powerful photooxidants with tunable photophysical properties. Journal of the American Chemical Society, 147(9), 7849–7858. https://doi.org/10.1021/jacs.4c18151 DOI: https://doi.org/10.1021/jacs.4c18151

Marcos, E., Chidyausiku, T. M., McShan, A. C., Evangelidis, T., Nerli, S., Carter, L., Nivón, L. G., Davis, A., Oberdorfer, G., Tripsianes, K., Sgourakis, N. G., y Baker, D. (2018). De novo design of a non-local β-sheet protein with high stability and accuracy. Nature Structural & Molecular Biology, 25(11), 1028–1034. https://doi.org/10.1038/s41594-018-0141-6 DOI: https://doi.org/10.1038/s41594-018-0141-6

Pan, X., y Kortemme, T. (2021). Recent advances in de novo protein design: Principles, methods, and applications. Journal of Biological Chemistry, 296, 100558. https://doi.org/10.1016/j.jbc.2021.100558 DOI: https://doi.org/10.1016/j.jbc.2021.100558

Polizzi, N. F., y DeGrado, W. F. (2020). A defined structural unit enables de novo design of small-molecule–binding proteins. Science, 369(6508), 1227–1233. https://doi.org/10.1126/science.abb8330 DOI: https://doi.org/10.1126/science.abb8330

Polizzi, N. F., Wu, Y., Lemmin, T., Maxwell, A. M., Zhang, S. Q., Rawson, J., Beratan, D. N., Therien, M. J., y DeGrado, W. F. (2017). De novo design of a hyperstable non-natural protein–ligand complex with sub-Å accuracy. Nature Chemistry, 9(12), 1157–1164. https://doi.org/10.1038/nchem.2846 DOI: https://doi.org/10.1038/nchem.2846

Regan, L., y Clarke, N. D. (1990). A tetrahedral zinc (II)-binding site introduced into a designed protein. Biochemistry, 29(49), 10878–10883. https://doi.org/10.1021/bi00501a003 DOI: https://doi.org/10.1021/bi00501a003

Rodriguez-Sotres, R., y Aguayo-Ortíz, R. (2025). Desentrañando los secretos de autoensamblado en las máquinas de la vida: plegamiento de proteínas y Nobel de Química 2024. Educación Química, 36(1), 5–13. https://doi.org/10.22201/fq.18708404e.2025.1.89902 DOI: https://doi.org/10.22201/fq.18708404e.2025.1.89902

Romero-Romero, S., Costas, M., Silva Manzano, D. A., Kordes, S., Rojas-Ortega, E., Tapia, C., Guerra, Y., Shanmugaratnam, S., Rodríguez-Romero, A., Baker, D., Höcker, B., y Fernández-Velasco, D. A. (2021). The stability landscape of de novo TIM barrels explored by a modular design approach. Journal of Molecular Biology, 433(18), 167153. https://doi.org/10.1016/j.jmb.2021.167153 DOI: https://doi.org/10.1016/j.jmb.2021.167153

Street, A. G., y Mayo, S. L. (1999). Computational protein design. Structure, 7(5), R105–R109. https://doi.org/10.1016/S0969-2126(99)80062-8 DOI: https://doi.org/10.1016/S0969-2126(99)80062-8

Varadi, M., Bertoni, D., Magana, P., Paramval, U., Pidruchna, I., Radhakrishnan, M., Tsenkov, M., Nair, S., Mirdita, M., Yeo, J., Kovalevskiy, O., Tunyasuvunakool, K., Laydon, A., Žídek, A., Tomlinson, H., Hariharan, D., Abrahamson, J., Green, T., Jumper, J., ... y Velankar, S. (2024). AlphaFold Protein Structure Database in 2024: Providing structure coverage for over 214 million protein sequences. Nucleic Acids Research, 52(D1), D368–D375. https://doi.org/10.1093/nar/gkad1011 DOI: https://doi.org/10.1093/nar/gkad1011

Voet, A. R. D., Noguchi, H., Addy, C., Simoncini, D., Terada, D., Unzai, S., Park, S. Y., Zhang, K. Y. J., y Tame, J. R. H. (2014). Computational design of a self-assembling symmetrical β-propeller protein. Proceedings of the National Academy of Sciences, 111(42), 15102–15107. https://doi.org/10.1073/pnas.1412768111 DOI: https://doi.org/10.1073/pnas.1412768111

Wei, K. Y., Moschidi, D., Bick, M. J., Nerli, S., McShan, A. C., Carter, L. P., Huang, P. S., Fletcher, D. A., Sgourakis, N. G., Boyken, S. E., y Baker, D. (2020). Computational design of closely related proteins that adopt two well-defined but structurally divergent folds. Proceedings of the National Academy of Sciences, 117(13), 7208–7215. https://doi.org/10.1073/pnas.1914808117 DOI: https://doi.org/10.1073/pnas.1914808117

Woolfson, D. N. (2021). A brief history of de novo protein design: Minimal, rational, and computational. Journal of Molecular Biology, 433(20), 167160. https://doi.org/10.1016/j.jmb.2021.167160 DOI: https://doi.org/10.1016/j.jmb.2021.167160

Woolfson, D. N., Bartlett, G. J., Burton, A. J., Heal, J. W., Niitsu, A., Thomson, A. R., y Wood, C. W. (2015). De novo protein design: How do we expand into the universe of possible protein structures?. Current Opinion in Structural Biology, 33, 16–26. https://doi.org/10.1016/j.sbi.2015.05.009 DOI: https://doi.org/10.1016/j.sbi.2015.05.009

Yeh, A. H. W., Norn, C., Kipnis, Y., Tischer, D., Pellock, S. J., Evans, D., Ma, P., Lee, G. R., Zhang, J. Z., Anishchenko, I., Coventry, B., Cao, L., Dauparas, J., Halabiya, S., DeWitt, M., Carter, L., Houk, K. N., y Baker, D. (2023). De novo design of luciferases using deep learning. Nature, 614(7949), 774–780. https://doi.org/10.1038/s41586-023-05696-3 DOI: https://doi.org/10.1038/s41586-023-05696-3

Yue, K., y Dill, K. A. (1992). Inverse protein folding problem: Designing polymer sequences. Proceedings of the National Academy of Sciences, 89(9), 4163–4167. https://doi.org/10.1073/pnas.89.9.4163 DOI: https://doi.org/10.1073/pnas.89.9.4163

Zhang, S. Q., Huang, H., Yang, J., Kratochvil, H. T., Lolicato, M., Liu, Y., Shu, X., Liu, L., y DeGrado, W. F. (2018). Designed peptides that assemble into cross-α amyloid-like structures. Nature Chemical Biology, 14(9), 870–875. https://doi.org/10.1038/s41589-018-0105-5 DOI: https://doi.org/10.1038/s41589-018-0105-5

Artículos más leídos del mismo autor/a