High School Students’ Conceptual Understanding About Gas Nature and Properties in Iran
Main Article Content
Abstract
Misconceptions in science pose a significant challenge for both students and teachers, as many students accept what their teachers say as true, and textbooks can also contribute to misunderstandings. This study aimed to identify students’ perceptions of gas behavior and properties through a 60-minute diagnostic test. The sample consisted of 142 10th-grade students from a school for developing exceptional talents in Iran. The test, comprising six multiple-choice and three open-ended questions, was validated by chemistry experts and demonstrated high inter-rater reliability. It assessed students’ understanding of interparticle forces in the gas phase, the relationship between kinetic energy and gas pressure, and the nature and interactions of gas particles. The results showed that most students answered the questions incorrectly. Analyzing their explanations revealed several misconceptions, particularly regarding particulate-level concepts. Furthermore, misconceptions can be considered a form of prior knowledge, embedded within a framework of logic and justification, even if they contradict established scientific understanding.
Article Details
Citas en Dimensions Service
References
Atkinson, M. B., Croisant, M., & Bretz, S. L. (2021). Investigating first-year undergraduate chemistry students’ reasoning with reaction coordinate diagrams when choosing among particulate-level reaction mechanisms. Chemistry Education Research and Practice, 22(1), 199-213. https://doi.org/10.1039/D0RP00193G
Bayuni, T. C., Sopandi, W., & Sujana, A. (2018). Identification misconception of primary school teacher education students in changes of matters using a five-tier diagnostic test. Journal of Physics: Conference Series, 1013, 012086. https://doi.org/10.1088/1742-6596/1013/1/012086
Benson, D. L., Wittrock, M. C., & Baur, M. E. (1993). Students’ preconceptions of the nature of gases. Journal of Research in Science Teaching, 30(6), 587-597. https://doi.org/10.1002/tea.3660300607
Fuadi, F. N., Sopandi, W., Priscylio, G., Hamdu, G., & Mustikasari, L. (2020). Students’ conceptual changes on the air pressure learning using predict-observe-explain strategy [Misconception; conception changes; and POE strategy]. Mimbar Sekolah Dasar, 7(1), 16. https://doi.org/10.53400/mimbar-sd.v7i1.22457
Ge, Y.-P., Unsworth, L., & Wang, K.-H. (2017). The effects of explicit visual cues in reading biological diagrams. International Journal of Science Education, 39(5), 605-626. https://doi.org/10.1080/09500693.2017.1297549
Gegios, T., Salta, K., & Koinis, S. (2017). Investigating high-school chemical kinetics: The Greek chemistry textbook and students’ difficulties. Chemistry Education Research and Practice, 18(1), 151-168. https://doi.org/10.1039/C6RP00192K
Günter, T., & Alpat, S. K. (2019). What is the effect of case-based learning on the academic achievement of students on the topic of “biochemical oxygen demand”? Research in Science Education, 49(6), 1707-1733. https://doi.org/10.1007/s11165-017-9672-9
Habiddin, H., Akbar, D., Husniah, I., & Luna, P. (2022). Uncovering students’ understanding: Evidence for the teaching of acid-base properties of salt solution. Educación Química, 33, 64. https://doi.org/10.22201/fq.18708404e.2022.1.79488
Hwang, G.-J. (1995). Knowledge acquisition for fuzzy expert systems. International Journal of Intelligent Systems, 10(6), 541-560. https://doi.org/10.1002/int.4550100602
Jusniar, J., Effendy, E., Budiasih, E., & Sutrisno, S. (2020). Developing a three-tier diagnostic instrument on chemical equilibrium (TT-DICE). Educación Química, 31, 84. https://doi.org/10.22201/fq.18708404e.2020.3.72133
Jusniar, J., Effendy, E., Budiasih, E., & Sutrisno, S. (2021). The effectiveness of the “EMBE-R” learning strategy in preventing students’ misconceptions in chemical equilibrium. Educación Química, 32, 53. https://doi.org/10.22201/fq.18708404e.2021.2.75566
Kapıcı, H., & Akcay, H. (2016). Particulate nature of matter misconceptions held by middle and high school students in Turkey. European Journal of Education Studies, 2(8). https://doi.org/10.5281/zenodo.163547
Lackmann, A., Mahr, C., Schowalter, M., Fitzek, L., Weissmüller, J., Rosenauer, A., & Wittstock, A. (2017). A comparative study of alcohol oxidation over nanoporous gold in gas and liquid phase. Journal of Catalysis, 353, 99-106. https://doi.org/10.1016/j.jcat.2017.07.008
Lamoureux, G., & Ogilvie, J. (2022). New directions in teaching introductory and organic chemistry. Educación Química, 33, 167. https://doi.org/10.22201/fq.18708404e.2022.3.80759
Lima, F., & Passos, C. (2023). A training action for chemistry and science teachers: Contribution of problem-solving activities to inclusive education. Educación Química, 34, 102-117. https://doi.org/10.22201/fq.18708404e.2023.3.83078
Lin, H.-S., Cheng, H.-J., & Lawrenz, F. (2000). The assessment of students and teachers’ understanding of gas laws. Journal of Chemical Education, 77(2), 235. https://doi.org/10.1021/ed077p235
Lutfi, A., Hidayah, R., Aftinia, F., & Ipmawati, N. (2023). House of chemistry as a hydrocarbon learning media for high school students. Educación Química, 34, 176-187. https://doi.org/10.22201/fq.18708404e.2023.1.82798
Martinez, B. L., Sweeder, R. D., VandenPlas, J. R., & Herrington, D. G. (2021). Improving conceptual understanding of gas behavior through the use of screencasts and simulations. International Journal of STEM Education, 8(1), 5. https://doi.org/10.1186/s40594-020-00261-0
Martins, I., Baptista, M., & Arroio, A. (2021). Students’ cognitive structures about the copper cycle. Educación Química, 32, 34. https://doi.org/10.22201/fq.18708404e.2021.5.78699
Maulidah, N., & Wulandari, F. (2021). Literature study: Improving understanding of science concepts using science comics for elementary school students. Jurnal Penelitian Pendidikan IPA, 7(1), 80-86. https://doi.org/10.29303/jppipa.v7i1.509
Meli, K., Koliopoulos, D., & Lavidas, K. (2021). A model-based constructivist approach for bridging qualitative and quantitative aspects in teaching and learning the first law of thermodynamics. Science & Education.https://doi.org/10.1007/s11191-021-00262-7
Meneses, A., Escobar, J.-P., & Véliz, S. (2018). The effects of multimodal texts on science reading comprehension in Chilean fifth-graders: Text scaffolding and comprehension skills. International Journal of Science Education, 40(18), 2226-2244. https://doi.org/10.1080/09500693.2018.1527472
Nofitasari, I., & Sihombing, Y. (2017). Deskripsi kesulitan belajar peserta didik dan faktor penyebabnya dalam memahami materi listrik dinamis kelas X SMA Negeri 2 Bengkayang. Jurnal Penelitian Fisika dan Aplikasinya (JPFA), 7(1), 44-53. https://doi.org/10.26740/jpfa.v7n1.p44-53
Opitz, S. T., Neumann, K., Bernholt, S., & Harms, U. (2019). Students’ energy understanding across biology, chemistry, and physics contexts. Research in Science Education, 49(2), 521-541. https://doi.org/10.1007/s11165-017-9632-4
Preston, C. M. (2019). Effect of a diagram on primary students’ understanding about electric circuits. Research in Science Education, 49(5), 1433-1456. https://doi.org/10.1007/s11165-017-9662-y
Ribeiro, D., Passos, C., & Salgado, T. (2022). Problem-solving methodology in chemical technician education. Educación Química, 33, 106. https://doi.org/10.22201/fq.18708404e.2022.2.79856
Savasci-Acikalin, F. (2021). How middle school students represent phase change and interpret textbook representations: A comparison of student and textbook representations. Research in Science Education, 51(6), 1651-1685. https://doi.org/10.1007/s11165-019-9834-z
Senocak, E., Taskesenligil, Y., & Sozbilir, M. (2007). A study on teaching gases to prospective primary science teachers through problem-based learning. Research in Science Education, 37, 279-290. https://doi.org/10.1007/s11165-006-9026-5
Shehab, S. S., & BouJaoude, S. (2017). Analysis of the chemical representations in secondary Lebanese chemistry textbooks. International Journal of Science and Mathematics Education, 15(5), 797-816. https://doi.org/10.1007/s10763-016-9720-3
Stavy, R. (1991). Using analogy to overcome misconceptions about conservation of matter. Journal of Research in Science Teaching, 28(4), 305-313. https://doi.org/10.1002/tea.3660280404
Widarti, H., Rokhim, D., & Rahmaniyah, N. (2022). Multiple representation-based mobile apps with learning cycle 7E model on colligative properties of solutions. Educación Química, 33, 115-126. https://doi.org/10.22201/fq.18708404e.2022.3.80540
Winarni, S., Effendy, E., Budiasih, E., & Wonorahardjo, S. (2022). Constructing ‘concept approval strategy,’ a chemistry learning idea to prevent misconceptions. Educación Química, 33, 159. https://doi.org/10.22201/fq.18708404e.2022.2.79841
Yaumi, M. R., Sutopo, Zulaikah, S., & Sulur. (2020). Improving students’ conceptual understanding on kinetic theory of gas through modeling instruction. AIP Conference Proceedings, 2215(1), 030025. https://doi.org/10.1063/5.0003648
Yun, E., & Park, Y. (2018). Extraction of scientific semantic networks from science textbooks and comparison with science teachers’ spoken language by text network analysis. International Journal of Science Education, 40(17), 2118-2136. https://doi.org/10.1080/09500693.2018.1521536

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Educación Química por Universidad Nacional Autónoma de México se distribuye bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivar 4.0 Internacional.
Basada en una obra en http://www.revistas.unam.mx/index.php/req.