Aportes latinoamericanos al proceso de aprendizaje dentro del laboratorio de pregrado
Contenido principal del artículo
Resumen
El laboratorio es parte fundamental en los cursos de química debido a su capacidad de articular ambientes únicos de aprendizaje. A pesar de ello, se reportan cuestionamientos asociados a la falta de evidencia empírica que demuestren sus efectos en el aprendizaje. Con la finalidad de contribuir a esta brecha, se reporta una revisión bibliográfica enfocada en los aportes de autores afiliados a instituciones latinoamericanas respecto al aprendizaje en el laboratorio de química para nivel universitario. Se identificaron 80 artículos, los cuales destacan por ser escritos principalmente por autores brasileños (43%), mayormente en inglés (83%) y principalmente en el Journal of Chemical Education (61%). Estos documentos se caracterizan por ser innovaciones curriculares (91%) con un enfoque disciplinar y presentar intencionalidades pedagógicas y metodologías para la evaluación del aprendizaje diversas y no articuladas. Estos resultados muestran que los aportes latinoamericanos están centrados en el contenido disciplinar, lo cual da espacio a nuevas investigaciones centradas en otros aspectos del aprendizaje en el laboratorio. Finalmente, es recomendable que los investigadores puedan especificar en sus publicaciones aspectos como los objetivos de sus propuestas de laboratorio, las bases teóricas con las cuales se establece el aprendizaje y los instrumentos empleados para su medición.
Detalles del artículo
Citas en Dimensions Service
Citas
Aguilar, M., y Bize, R. (2011). Pedagogía de la Intencionalidad. Educando para una conciencia activa. Homo Sapiens Ediciones.
Agustian, H. Y., Finne, L. T., Jørgensen, J. T., Pedersen, M. I., Christiansen, F. V., Gammelgaard, B., y Nielsen, J. A. (2022). Learning outcomes of university chemistry teaching in laboratories: A systematic review of empirical literature. Review of Education, 10(2), e3360. https://doi.org/10.1002/rev3.3360
Alanís-Garza, B. A., Paniagua-Vega, D., Rodríguez-Martínez, O., Cavazos-Rocha, N., Salazar-Aranda, R., Waksman-Minsky, N., y Saucedo, A. L. (2023). Instrumental analysis experience-based teaching before and during the COVID-19 pandemic: Challenges and opportunities. Journal of Chemical Education, 100(4), 1476-1485. https://doi.org/10.1021/acs.jchemed.2c00875
Angelani, C. R., Carabias, P., Cruz, K. M., Delfino, J. M., de Sautu, M., Espelt, M. V., Ferreira-Gomes, M. S., Gómez, G. E., Mangialavori, I. C., Manzi, M., Pignataro, M. F., Saffioti, N. A., Salvatierra Fréchou, D. M., Santos, J., y Schwarzbaum, P. J. (2018). A metabolic control analysis approach to introduce the study of systems in biochemistry: The glycolytic pathway in the red blood cell. Biochemistry and Molecular Biology Education, 46(5), 502-515. https://doi.org/10.1002/bmb.21139
Bezerra de Castro, C., Teixeira, I. F., y Marques Netto, C. G. C. (2020). Periodic trends in a simulated water treatment station: A methodology to engage students in the lower levels of inorganic chemistry learning. Journal of Chemical Education, 97(8), 2175-2184. https://doi.org/10.1021/acs.jchemed.0c00230
Bretz, S. L. (2019). Evidence for the importance of laboratory courses. Journal of Chemical Education, 96(2), 193-195. https://doi.org/10.1021/acs.jchemed.8b00874
Cáceres-Jensen, L., Rodríguez-Becerra, J., Jorquera-Moreno, B., Escudey, M., Druker-Ibañez, S., Hernández-Ramos, J., Díaz-Arce, T., Pernaa, J., y Aksela, M. (2021). Learning reaction kinetics through sustainable chemistry of herbicides: A case study of preservice chemistry teachers’ perceptions of problem-based technology enhanced learning. Journal of Chemical Education, 98(5), 1571-1582. https://doi.org/10.1021/acs.jchemed.0c00557
Cardoso-Avila, P. E., y Pichardo Molina, J. L. (2018). Demonstrating the photochemical transformation of silver nanoparticles. Journal of Chemical Education, 95(11), 2034-2040. https://doi.org/10.1021/acs.jchemed.8b00266
Carnduff, J., y Reid, N. (2003). Enhancing undergraduate chemistry laboratories. The Royal Society of Chemistry. http://pubs.rsc.org/en/content/ebook/978-0-85404-378-1
Chang, H. (2017). What history tells us about the distinct nature of chemistry. Ambix, 64(4), 360-374. https://doi.org/10.1080/00026980.2017.1412135
Chinn, C. A., y Iordanou, K. (2023). Theories of Learning. En Handbook of Research on Science Education. Routledge.
Cortés, M. T., Vargas, C., Blanco, D. A., Quinchanegua, I. D., Cortés, C., y Jaramillo, A. M. (2019). Bioinspired polydopamine synthesis and Its electrochemical characterization. Journal of Chemical Education, 96(6), 1250-1255. https://doi.org/10.1021/acs.jchemed.8b00432
da Silva, R. S., y Borges, E. M. (2019). Quantitative analysis using a flatbed scanner: Aspirin quantification in pharmaceutical tablets. Journal of Chemical Education, 96(7), 1519-1526. https://doi.org/10.1021/acs.jchemed.8b00620
Decker, A., y McGill, M. M. (2019). A systematic review exploring the differences in reported data for pre-college educational activities for computer science, engineering, and other STEM disciplines. Education Sciences, 9(2), Article 2. https://doi.org/10.3390/educsci9020069
Esponda-Velásquez, R. I., Rivera-Martínez, B. A., Valle-Suárez, R. M., y Ponce-Rodríguez, H. D. (2023). Teaching microextraction techniques during COVID-19 pandemic through remote lab strategy. Journal of Chemical Education, 100(4), 1680-1686. https://doi.org/10.1021/acs.jchemed.2c00660
Galloway, K. R., y Bretz, S. L. (2015a). Development of an assessment tool to measure students’ meaningful learning in the undergraduate chemistry laboratory. Journal of Chemical Education, 92(7), 1149-1158. https://doi.org/10.1021/ed500881y
Galloway, K. R., y Bretz, S. L. (2015b). Measuring meaningful learning in the undergraduate chemistry laboratory: A national, cross-sectional study. Journal of Chemical Education, 92(12), 2006-2018. https://doi.org/10.1021/acs.jchemed.5b00538
Galloway, K. R., y Bretz, S. L. (2015c). Measuring meaningful learning in the undergraduate general chemistry and organic chemistry laboratories: A longitudinal study. Journal of Chemical Education, 92(12), 2019-2030. https://doi.org/10.1021/acs.jchemed.5b00754
Galloway, K. R., y Bretz, S. L. (2015d). Using cluster analysis to characterize meaningful learning in a first-year university chemistry laboratory course. Chemistry Education Research and Practice, 16(4), 879-892. https://doi.org/10.1039/C5RP00077G
Hamer, M., Beraldi, A. M., Gomez, S. G. J., Ortega, F., Onna, D., y Hamer, M. (2021). Glowing-in-the-screen: Teaching fluorescence with a homemade accessible setup. Journal of Chemical Education, 98(8), 2625-2631. https://doi.org/10.1021/acs.jchemed.1c00328
Hofstein, A. (2004). The laboratory in chemistry education: Thirty years of experience with developments, implementation, and research. Chemistry Education Research and Practice, 5(3), 247-264. https://doi.org/10.1039/B4RP90027H
Hofstein, A., y Lunetta, V. N. (1982). The role of the laboratory in science teaching: Neglected aspects of research: Review of Educational Research, 52(2). https://doi.org/10.3102/00346543052002201
Holme, T. A. (2020). Introduction to the Journal of Chemical Education special issue on insights gained while teaching chemistry in the time of COVID-19. Journal of Chemical Education, 97(9), 2375-2377. https://doi.org/10.1021/acs.jchemed.0c01087
Jenkins, E. (2007). What is the school science laboratory for? Journal of Curriculum Studies, 39(6), 723-736. https://doi.org/10.1080/00220270601134425
Lunetta, V. N., Hofstein, A., y Clough, M. P. (2007). Learning and teaching in the school science laboratory: An analysis of research, theory, and practice. En S. K. Abell & N. G. Lederman (Eds.), Handbook of Research on Science Education (Lawrence Erlbaum, pp. 393-411). Mahwah.
Prat, M. R., Ballesteros, C., y M. Lescano, G. (2018). “La previa”: Una estrategia de aprendizaje en las prácticas de química. Educación Química, 29(4), 18. https://doi.org/10.22201/fq.18708404e.2018.4.65213
Primo, E. D., Otero, L. H., Ruiz, F., Klinke, S., y Giordano, W. (2018). The disruptive effect of lysozyme on the bacterial cell wall explored by an in-silico structural outlook. Biochemistry and Molecular Biology Education, 46(1), 83-90. https://doi.org/10.1002/bmb.21092
Queiroga, J. de S., y Barbalho, B. C. (2018). Recuperação de cobre a partir de resíduos gerados nas aulas práticas de química no ensino médio. HOLOS, 2, 128-145. https://doi.org/10.15628/holos.2018.5739
Reid, N., y Ali, A. A. (2020). Making sense of learning: A research-based approach. Springer International Publishing. https://www.springer.com/gp/book/9783030536763
Reid, N., y Shah, I. (2007). The role of laboratory work in university chemistry. Chemistry Education Research and Practice, 8(2), 172-185. https://doi.org/10.1039/B5RP90026C
Reyes Cárdenas, F. de M., Cafaggi Lemus, C. E., y Llano Lomas, M. G. (2019). Evaluación y aprendizaje basado en habilidades de pensamiento en un curso de laboratorio de química general. Educación Química, 30(3), Article 3. https://doi.org/10.22201/fq.18708404e.2019.3.69402
Rosa, C. H., Antelo, F., y Rosa, G. R. (2018). Kinetics of thermal-degradation of betanins: A teaching mini-project for undergraduates employing the red beet. Journal of Food Science Education, 17(4), 104-110. https://doi.org/10.1111/1541-4329.12147
Rubio, E., y Giraldo, L. G. (2006). Fines pedagógicos. Intencionalidad pedagógica. En Grupo de Investigación Estudios de Educación Corporal, Sentidos de la motricidad en el escenario escolar. Grupo de Investigación Estudios de Educación Corporal.
Sandi-Urena, S. (2020). Experimentation skills away from the chemistry laboratory: Emergency remote teaching of multimodal laboratories. Journal of Chemical Education, 97(9), 3011-3017. https://doi.org/10.1021/acs.jchemed.0c00803
Sansom, R., y Walker, J. P. (2020). Investing in laboratory courses. Journal of Chemical Education, 97(1), 308-309. https://doi.org/10.1021/acs.jchemed.9b00714
Santos-Díaz, S., Hensiek, S., Owings, T., y Towns, M. H. (2019). Survey of undergraduate students’ goals and achievement strategies for laboratory coursework. Journal of Chemical Education, 96(5), 850-856. https://doi.org/10.1021/acs.jchemed.8b00984
Seery, M. K. (2020). Establishing the laboratory as the place to learn how to do chemistry. Journal of Chemical Education, 97(6), 1511-1514. https://doi.org/10.1021/acs.jchemed.9b00764
Seery, M. K., Agustian, H. Y., Doidge, E. D., Kucharski, M. M., O’Connor, H. M., y Price, A. (2017). Developing laboratory skills by incorporating peer-review and digital badges. Chemistry Education Research and Practice, 18(3), 403-419. https://doi.org/10.1039/C7RP00003K
Seery, M. K., Agustian, H. Y., y Zhang, X. (2019). A framework for learning in the chemistry laboratory. Israel Journal of Chemistry, 59(6-7), 546-553. https://doi.org/10.1002/ijch.201800093
Smith, M. U., y Siegel, H. (2004). Knowing, believing, and understanding: What goals for science education? Science & Education, 13(6), 553-582. https://doi.org/10.1023/B:SCED.0000042848.14208.bf
Stahre Wästberg, B., Eriksson, T., Karlsson, G., Sunnerstam, M., Axelsson, M., y Billger, M. (2019). Design considerations for virtual laboratories: A comparative study of two virtual laboratories for learning about gas solubility and colour appearance. Education and Information Technologies, 24(3), 2059-2080. https://doi.org/10.1007/s10639-018-09857-0
Towns, M. H. (2017). Faculty and student goals for undergraduate laboratory. Química Nova, 40(4), 454-455. https://doi.org/10.21577/0100-4042.20170005
Valdivieso-Rivera, F., Almeida, J. R., y Proaño-Bolaños, C. (2022). An experimental protocol for molecular biology lab at an Amazonian University. Biochemistry and Molecular Biology Education, 50(3), 326-333. https://doi.org/10.1002/bmb.21612
Valencia, K., Sanjosé, V., y Torres, T. (2019). Do laboratory activities contribute to a contemporary conception of science in initial teacher training? Periódico Tchê Química, 16(32), 983-995. https://doi.org/10.52571/PTQ.v16.n32.2019.1000_Periodico32_pgs_983_995.pdf
Van Brederode, M. E., Zoon, S. A., y Meeter, M. (2020). Examining the effect of lab instructions on students’ critical thinking during a chemical inquiry practical. Chemistry Education Research and Practice, 21(4), 1173-1182. https://doi.org/10.1039/D0RP00020E
Xu, X., Li, N., Chen, C., Zhao, L., Jiang, Y., Zhang, J., y Lin, X. (2023). The ideological and political education in the courses of ceneral chemistry laboratory. University Chemistry, 38(5), 61-66. https://doi.org/10.3866/PKU.DXHX202207020
Educación Química por Universidad Nacional Autónoma de México se distribuye bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivar 4.0 Internacional.
Basada en una obra en http://www.revistas.unam.mx/index.php/req.