Aportes latinoamericanos al proceso de aprendizaje dentro del laboratorio de pregrado

Contenido principal del artículo

Rubén Ignacio Arancibia-Olivares
Germán Barriga-González
David Reyes-González

Resumen

El laboratorio es parte fundamental en los cursos de química debido a su capacidad de articular ambientes únicos de aprendizaje. A pesar de ello, se reportan cuestionamientos asociados a la falta de evidencia empírica que demuestren sus efectos en el aprendizaje. Con la finalidad de contribuir a esta brecha, se reporta una revisión bibliográfica enfocada en los aportes de autores afiliados a instituciones latinoamericanas respecto al aprendizaje en el laboratorio de química para nivel universitario. Se identificaron 80 artículos, los cuales destacan por ser escritos principalmente por autores brasileños (43%), mayormente en inglés (83%) y principalmente en el Journal of Chemical Education (61%). Estos documentos se caracterizan por ser innovaciones curriculares (91%) con un enfoque disciplinar y presentar intencionalidades pedagógicas y metodologías para la evaluación del aprendizaje diversas y no articuladas. Estos resultados muestran que los aportes latinoamericanos están centrados en el contenido disciplinar, lo cual da espacio a nuevas investigaciones centradas en otros aspectos del aprendizaje en el laboratorio. Finalmente, es recomendable que los investigadores puedan especificar en sus publicaciones aspectos como los objetivos de sus propuestas de laboratorio, las bases teóricas con las cuales se establece el aprendizaje y los instrumentos empleados para su medición.

Detalles del artículo

Biografía del autor/a

Rubén Ignacio Arancibia-Olivares, Programa de Doctorado en Educación, UMCE, Santigo de Chile

Doctorando del Programa de Doctorado en Educación, UMCE, Santigo de Chile

Citas

Aguilar, M., y Bize, R. (2011). Pedagogía de la Intencionalidad. Educando para una conciencia activa. Homo Sapiens Ediciones.

Agustian, H. Y., Finne, L. T., Jørgensen, J. T., Pedersen, M. I., Christiansen, F. V., Gammelgaard, B., y Nielsen, J. A. (2022). Learning outcomes of university chemistry teaching in laboratories: A systematic review of empirical literature. Review of Education, 10(2), e3360. https://doi.org/10.1002/rev3.3360

Alanís-Garza, B. A., Paniagua-Vega, D., Rodríguez-Martínez, O., Cavazos-Rocha, N., Salazar-Aranda, R., Waksman-Minsky, N., y Saucedo, A. L. (2023). Instrumental analysis experience-based teaching before and during the COVID-19 pandemic: Challenges and opportunities. Journal of Chemical Education, 100(4), 1476-1485. https://doi.org/10.1021/acs.jchemed.2c00875

Angelani, C. R., Carabias, P., Cruz, K. M., Delfino, J. M., de Sautu, M., Espelt, M. V., Ferreira-Gomes, M. S., Gómez, G. E., Mangialavori, I. C., Manzi, M., Pignataro, M. F., Saffioti, N. A., Salvatierra Fréchou, D. M., Santos, J., y Schwarzbaum, P. J. (2018). A metabolic control analysis approach to introduce the study of systems in biochemistry: The glycolytic pathway in the red blood cell. Biochemistry and Molecular Biology Education, 46(5), 502-515. https://doi.org/10.1002/bmb.21139

Bezerra de Castro, C., Teixeira, I. F., y Marques Netto, C. G. C. (2020). Periodic trends in a simulated water treatment station: A methodology to engage students in the lower levels of inorganic chemistry learning. Journal of Chemical Education, 97(8), 2175-2184. https://doi.org/10.1021/acs.jchemed.0c00230

Bretz, S. L. (2019). Evidence for the importance of laboratory courses. Journal of Chemical Education, 96(2), 193-195. https://doi.org/10.1021/acs.jchemed.8b00874

Cáceres-Jensen, L., Rodríguez-Becerra, J., Jorquera-Moreno, B., Escudey, M., Druker-Ibañez, S., Hernández-Ramos, J., Díaz-Arce, T., Pernaa, J., y Aksela, M. (2021). Learning reaction kinetics through sustainable chemistry of herbicides: A case study of preservice chemistry teachers’ perceptions of problem-based technology enhanced learning. Journal of Chemical Education, 98(5), 1571-1582. https://doi.org/10.1021/acs.jchemed.0c00557

Cardoso-Avila, P. E., y Pichardo Molina, J. L. (2018). Demonstrating the photochemical transformation of silver nanoparticles. Journal of Chemical Education, 95(11), 2034-2040. https://doi.org/10.1021/acs.jchemed.8b00266

Carnduff, J., y Reid, N. (2003). Enhancing undergraduate chemistry laboratories. The Royal Society of Chemistry. http://pubs.rsc.org/en/content/ebook/978-0-85404-378-1

Chang, H. (2017). What history tells us about the distinct nature of chemistry. Ambix, 64(4), 360-374. https://doi.org/10.1080/00026980.2017.1412135

Chinn, C. A., y Iordanou, K. (2023). Theories of Learning. En Handbook of Research on Science Education. Routledge.

Cortés, M. T., Vargas, C., Blanco, D. A., Quinchanegua, I. D., Cortés, C., y Jaramillo, A. M. (2019). Bioinspired polydopamine synthesis and Its electrochemical characterization. Journal of Chemical Education, 96(6), 1250-1255. https://doi.org/10.1021/acs.jchemed.8b00432

da Silva, R. S., y Borges, E. M. (2019). Quantitative analysis using a flatbed scanner: Aspirin quantification in pharmaceutical tablets. Journal of Chemical Education, 96(7), 1519-1526. https://doi.org/10.1021/acs.jchemed.8b00620

Decker, A., y McGill, M. M. (2019). A systematic review exploring the differences in reported data for pre-college educational activities for computer science, engineering, and other STEM disciplines. Education Sciences, 9(2), Article 2. https://doi.org/10.3390/educsci9020069

Esponda-Velásquez, R. I., Rivera-Martínez, B. A., Valle-Suárez, R. M., y Ponce-Rodríguez, H. D. (2023). Teaching microextraction techniques during COVID-19 pandemic through remote lab strategy. Journal of Chemical Education, 100(4), 1680-1686. https://doi.org/10.1021/acs.jchemed.2c00660

Galloway, K. R., y Bretz, S. L. (2015a). Development of an assessment tool to measure students’ meaningful learning in the undergraduate chemistry laboratory. Journal of Chemical Education, 92(7), 1149-1158. https://doi.org/10.1021/ed500881y

Galloway, K. R., y Bretz, S. L. (2015b). Measuring meaningful learning in the undergraduate chemistry laboratory: A national, cross-sectional study. Journal of Chemical Education, 92(12), 2006-2018. https://doi.org/10.1021/acs.jchemed.5b00538

Galloway, K. R., y Bretz, S. L. (2015c). Measuring meaningful learning in the undergraduate general chemistry and organic chemistry laboratories: A longitudinal study. Journal of Chemical Education, 92(12), 2019-2030. https://doi.org/10.1021/acs.jchemed.5b00754

Galloway, K. R., y Bretz, S. L. (2015d). Using cluster analysis to characterize meaningful learning in a first-year university chemistry laboratory course. Chemistry Education Research and Practice, 16(4), 879-892. https://doi.org/10.1039/C5RP00077G

Hamer, M., Beraldi, A. M., Gomez, S. G. J., Ortega, F., Onna, D., y Hamer, M. (2021). Glowing-in-the-screen: Teaching fluorescence with a homemade accessible setup. Journal of Chemical Education, 98(8), 2625-2631. https://doi.org/10.1021/acs.jchemed.1c00328

Hofstein, A. (2004). The laboratory in chemistry education: Thirty years of experience with developments, implementation, and research. Chemistry Education Research and Practice, 5(3), 247-264. https://doi.org/10.1039/B4RP90027H

Hofstein, A., y Lunetta, V. N. (1982). The role of the laboratory in science teaching: Neglected aspects of research: Review of Educational Research, 52(2). https://doi.org/10.3102/00346543052002201

Holme, T. A. (2020). Introduction to the Journal of Chemical Education special issue on insights gained while teaching chemistry in the time of COVID-19. Journal of Chemical Education, 97(9), 2375-2377. https://doi.org/10.1021/acs.jchemed.0c01087

Jenkins, E. (2007). What is the school science laboratory for? Journal of Curriculum Studies, 39(6), 723-736. https://doi.org/10.1080/00220270601134425

Lunetta, V. N., Hofstein, A., y Clough, M. P. (2007). Learning and teaching in the school science laboratory: An analysis of research, theory, and practice. En S. K. Abell & N. G. Lederman (Eds.), Handbook of Research on Science Education (Lawrence Erlbaum, pp. 393-411). Mahwah.

Prat, M. R., Ballesteros, C., y M. Lescano, G. (2018). “La previa”: Una estrategia de aprendizaje en las prácticas de química. Educación Química, 29(4), 18. https://doi.org/10.22201/fq.18708404e.2018.4.65213

Primo, E. D., Otero, L. H., Ruiz, F., Klinke, S., y Giordano, W. (2018). The disruptive effect of lysozyme on the bacterial cell wall explored by an in-silico structural outlook. Biochemistry and Molecular Biology Education, 46(1), 83-90. https://doi.org/10.1002/bmb.21092

Queiroga, J. de S., y Barbalho, B. C. (2018). Recuperação de cobre a partir de resíduos gerados nas aulas práticas de química no ensino médio. HOLOS, 2, 128-145. https://doi.org/10.15628/holos.2018.5739

Reid, N., y Ali, A. A. (2020). Making sense of learning: A research-based approach. Springer International Publishing. https://www.springer.com/gp/book/9783030536763

Reid, N., y Shah, I. (2007). The role of laboratory work in university chemistry. Chemistry Education Research and Practice, 8(2), 172-185. https://doi.org/10.1039/B5RP90026C

Reyes Cárdenas, F. de M., Cafaggi Lemus, C. E., y Llano Lomas, M. G. (2019). Evaluación y aprendizaje basado en habilidades de pensamiento en un curso de laboratorio de química general. Educación Química, 30(3), Article 3. https://doi.org/10.22201/fq.18708404e.2019.3.69402

Rosa, C. H., Antelo, F., y Rosa, G. R. (2018). Kinetics of thermal-degradation of betanins: A teaching mini-project for undergraduates employing the red beet. Journal of Food Science Education, 17(4), 104-110. https://doi.org/10.1111/1541-4329.12147

Rubio, E., y Giraldo, L. G. (2006). Fines pedagógicos. Intencionalidad pedagógica. En Grupo de Investigación Estudios de Educación Corporal, Sentidos de la motricidad en el escenario escolar. Grupo de Investigación Estudios de Educación Corporal.

Sandi-Urena, S. (2020). Experimentation skills away from the chemistry laboratory: Emergency remote teaching of multimodal laboratories. Journal of Chemical Education, 97(9), 3011-3017. https://doi.org/10.1021/acs.jchemed.0c00803

Sansom, R., y Walker, J. P. (2020). Investing in laboratory courses. Journal of Chemical Education, 97(1), 308-309. https://doi.org/10.1021/acs.jchemed.9b00714

Santos-Díaz, S., Hensiek, S., Owings, T., y Towns, M. H. (2019). Survey of undergraduate students’ goals and achievement strategies for laboratory coursework. Journal of Chemical Education, 96(5), 850-856. https://doi.org/10.1021/acs.jchemed.8b00984

Seery, M. K. (2020). Establishing the laboratory as the place to learn how to do chemistry. Journal of Chemical Education, 97(6), 1511-1514. https://doi.org/10.1021/acs.jchemed.9b00764

Seery, M. K., Agustian, H. Y., Doidge, E. D., Kucharski, M. M., O’Connor, H. M., y Price, A. (2017). Developing laboratory skills by incorporating peer-review and digital badges. Chemistry Education Research and Practice, 18(3), 403-419. https://doi.org/10.1039/C7RP00003K

Seery, M. K., Agustian, H. Y., y Zhang, X. (2019). A framework for learning in the chemistry laboratory. Israel Journal of Chemistry, 59(6-7), 546-553. https://doi.org/10.1002/ijch.201800093

Smith, M. U., y Siegel, H. (2004). Knowing, believing, and understanding: What goals for science education? Science & Education, 13(6), 553-582. https://doi.org/10.1023/B:SCED.0000042848.14208.bf

Stahre Wästberg, B., Eriksson, T., Karlsson, G., Sunnerstam, M., Axelsson, M., y Billger, M. (2019). Design considerations for virtual laboratories: A comparative study of two virtual laboratories for learning about gas solubility and colour appearance. Education and Information Technologies, 24(3), 2059-2080. https://doi.org/10.1007/s10639-018-09857-0

Towns, M. H. (2017). Faculty and student goals for undergraduate laboratory. Química Nova, 40(4), 454-455. https://doi.org/10.21577/0100-4042.20170005

Valdivieso-Rivera, F., Almeida, J. R., y Proaño-Bolaños, C. (2022). An experimental protocol for molecular biology lab at an Amazonian University. Biochemistry and Molecular Biology Education, 50(3), 326-333. https://doi.org/10.1002/bmb.21612

Valencia, K., Sanjosé, V., y Torres, T. (2019). Do laboratory activities contribute to a contemporary conception of science in initial teacher training? Periódico Tchê Química, 16(32), 983-995. https://doi.org/10.52571/PTQ.v16.n32.2019.1000_Periodico32_pgs_983_995.pdf

Van Brederode, M. E., Zoon, S. A., y Meeter, M. (2020). Examining the effect of lab instructions on students’ critical thinking during a chemical inquiry practical. Chemistry Education Research and Practice, 21(4), 1173-1182. https://doi.org/10.1039/D0RP00020E

Xu, X., Li, N., Chen, C., Zhao, L., Jiang, Y., Zhang, J., y Lin, X. (2023). The ideological and political education in the courses of ceneral chemistry laboratory. University Chemistry, 38(5), 61-66. https://doi.org/10.3866/PKU.DXHX202207020