Strogens could be an antioxidant alternative

Main Article Content

Manuel Eusebio Medina López
María Fernanda Hernández Hernández

Abstract

This manuscript presents information about the oxygen reactive species, oxidative stress, and their relationship with many widely distributed/ubiquitous illnesses. The antioxidant activity of estrogens in the organism is discussed along with the main reaction mechanisms involved in this capability. On the other hand, estrogens are endogen molecules of great importance to organisms because they participate in many physiological functions. Here are presented the single electron transfer (SET) reaction mechanism, the radical adduct formation (RAF), and the Hydrogen transfer (HT) of estrogens with the hydroperoxyl radical. The antioxidant activity of estrogens was compared against the ability of other natural antioxidants concluding with the possibility of them to work as antioxidants. The information presented here could be applied as an example in the free radical chapter on the organic chemistry class.

Article Details

Author Biography

Manuel Eusebio Medina López, Centro de Investigación en Micología Aplicada, Universidad Veracruzana

Centro de Investigación en Micología Aplicada

References

Avello, M., y Suwalsky, M. (2006a). Radicales libres, antioxidantes naturales y mecanismos de protección. Atenea (Concepción), 494. https://doi.org/10.4067/S0718-04622006000200010

Avello, M., y Suwalsky, M. (2006b). Radicales libres, antioxidantes naturales y mecanismos de protección. Atenea (Concepción), 494. https://doi.org/10.4067/S0718-04622006000200010

Chang, Raymond. et al. (2010). Química (7th ed.).

Dhaunsi, G. S., Gulati, S., Singh, A. K., Orak, J. K., Asayama, K., y Singh, I. (1992). Demonstration of Cu-Zn superoxide dismutase in rat liver peroxisomes. Biochemical and immunochemical evidence. The Journal of Biological Chemistry, 267(10), 6870–6873.

Galano, A., y Alvarez-Idaboy, J. R. (2013). A computational methodology for accurate predictions of rate constants in solution: Application to the assessment of primary antioxidant activity. Journal of Computational Chemistry, 34(28), 2430–2445. https://doi.org/10.1002/jcc.23409

Ghosh, P., Samanta, A. N., y Ray, S. (2010). COD reduction of petrochemical industry wastewater using Fenton’s oxidation. The Canadian Journal of Chemical Engineering, 88(6), 1021–1026. https://doi.org/10.1002/cjce.20353

Halliwell, B., y Gutteridge, J. M. C. (1999). Free Radicals in Biology and Medicine (3ra ed.).

Hernández-Hernández, M. F., Tejeda-Medina, E. A., Espinoza, C., y Medina, M. E. (2023). On the hydroperoxyl radical scavenging activity of estrogens in lipid and aqueous media: a theoretical study. J. Phys. Org. Chem.

Kaipia, A., Toppari, J., Huhtaniemi, I., y Paranko, J. (1994). Sex difference in the action of activin-A on cell proliferation of differentiating rat gonad. Endocrinology, 134(5), 2165–2170. https://doi.org/10.1210/endo.134.5.8156918

Lancaster Jr, J. R. (1992). Nitric oxide in cells. American Scientist, 80(3), 248–259.

Marcos Becerro, J. F. (2008). Las hormonas esteroideas sexuales, el envejecimiento y el ejercicio. Revista Andaluza de Medicina Del Deporte, 1(1), 22–36.

Mayor-Oxilia, R. (2010, December 12). Estrés Oxidativo y Sistema de Defensa Antioxidante. Rev. Inst. Med. Trop., 23–29.

Paredes-Salido, F., y Roca-Fernandez, J. J. (2002). influencia de los radicales libres en el envejecimiento celular. In Bioquímica (7th ed., Vol. 21, pp. 96–100). OFFARM.

Pierce, J. D., Cackler, A. B., y Arnett, M. G. (2004). Why should you care about free radicals? RN, 67(1), 38–42; quiz 43.

Taverne, Y. J., Merkus, D., Bogers, A. J., Halliwell, B., Duncker, D. J., y Lyons, T. W. (2018). Reactive Oxygen Species: Radical Factors in the Evolution of Animal Life. BioEssays, 40(3), 1700158. https://doi.org/10.1002/bies.201700158