Drought and coffee production: farmer perception in the Huasteca Potosina

Main Article Content

Nelly Azalia Martínez Torres
Germ´án Santacruz de León

Abstract

Purpose: To determine the influence of drought on the levels of coffee productivity, and to identify the perceptions of coffee growers in Huasteca Potosina.


Methodological design: The Standardized Precipitation Index (SPI) was determined for 12 months with data from five pluviometric stations located in the coffee growing area within Huasteca Potosina for the period 1961-2018. It was compared with the seasonal behavior of the sown area, the harvested area, and the volume of production for the period 1985-2020. The annual precipitation from those five pluviometric stations was correlated with the sown area and production by determining the Pearson correlation coefficient (r). Additionally, 25 structured interviews were applied to coffee growers.


Results: Slightly dry seasons have an influence over the harvested area as well as on the volume of production, with values close to the average value. The values of r of Pearson show a very low correlation between rainfall precipitation and the volume of production. 60% of the interviewees point out that climate variability has an impact on coffee production.


Research limitations: Determination of the standardized precipitation index with which dry and wet periods are estimated only considers the values of rainfall measured at each meteorological station.


Findings: The comparison of the standardized precipitation index with the annual behavior of the harvested area and the volume of coffee production show that rainfall is relevant in coffee production which coincides with the perception of coffee producers.

Downloads

Download data is not yet available.

Article Details

How to Cite
Martínez Torres, N. A. ., & Santacruz de León , G. . (2023). Drought and coffee production: farmer perception in the Huasteca Potosina. Entreciencias: Diálogos En La Sociedad Del Conocimiento, 11(25), 1–15. https://doi.org/10.22201/enesl.20078064e.2023.25.84264

Citas en Dimensions Service

Author Biographies

Nelly Azalia Martínez Torres, El Colegio de San Luis

Ph.D. student in Social Sciences at El Colegio de San Luis, A.C. Her research focuses on territory studies, power relations, and agricultural production

Germ´án Santacruz de León , El Colegio de San Luis

Ph. D. in Environmental Sciences from the Autonomous University of San Luis Potosí. Full-Time Research Professor at El Colegio de San Luis A.C. His research areas include territory studies and socioenvironmental issues related to the use and management of water. He is a member of the National Researchers System, Level I.

References

Algara, M. (2009). Propuestas Generales de Manejo; Mitigación de Sequías en la Zona Huasteca del Estado de San Luis Potosí (Tesis de doctorado en Ciencias Ambientales). Universidad Autónoma de San Luis Potosí. México.

Allou, A., Trejo, J., y Martínez, M. (2018). Opción climática para la producción de café en México. Ensayos. Revista de economía, 37(2), 135-154. https://doi.org/10.29105/ensayos37.2-1

Anhar, A., Abubakar, Y., Widayat, H., Muslih, A., y Baihaqi, A. (2021). Altitude, shading, and management intensity effect on Arabica coffee yields in Aceh, Indonesia. Open Agriculture, 6(1), 254-262. https://doi.org/10.1515/opag-2021-0220

Baca, M., Läderach, P., Haggar, J., Schroth, G., y Ovalle, O. (2014). An Integrated Framewortk for Assessing Vulnerability to Climate Change and Developing Adaptation Strategies for Coffee Growing Families in Mesoamerica. Open One 9(2), 1-11. https://doi.org/10.1371/journal.pone.0088463

Baltazar-da Silva, D., Morejón-García, M., Díaz-Pita, A., de Almeida, F. M., da Costa-Neta, J. F., y Gonçalves, V. (2020). Caracterización agroclimática de la provincia Uigé, Angola en función del desarrollo del Café Robusta. Cultivos Tropicales, 41(1). https://bit.ly/3SLodKi

Bongase, E. D. (2017). Impacts of climate change on global coffee production industry: Review. African Journal of Agricultural Research, 12(19), 1607-1611. https://doi.org/10.5897/AJAR2017.12147

Bunn, C., Läderach, P., Ovalle, O., y Kirschke, D. (2015). A bitter cup: Climate change profile of global production of Arabica and Robusta coffee. Climatic Change, 129, 89-101. https://doi.org/10.1007/s10584-014-1306-x

Cacciamani, C., Morgillo, A., Marchesi, S., y Pavan, V. (2007). Monitoring and forecasting drought on a regional scale: Emilia-Romagna region. En G. Rossi, T. Vega, y B. Bonaccorso, Methods and Tools for Drought Analysis and Management (pp. 29-48). Springer: Dordrecht, Países Bajos.

Campos-Aranda, D. (2012). ¿Cómo se cuantifican las sequías? Revista Universitarios Potosinos. (7), 10-15. https://bit.ly/3Zbe3Fn

Campos-Aranda, D. (2020). Detección de registros homogéneos en 16 series amplias de precipitación anual del Altiplano Potosino, México. Tecnología y Ciencias del Agua, 11(3), 107-157. DOI: 10.24850/j-tyca-2020-03-04

Castellanos, E. (2011). Estrategias efectivas de adaptación y reducción de riesgos por fluctuaciones de precios, plagas y cambios climáticos: lecciones de la crisis del café en Mesoamérica, https://www.iai.int/es/meetings/detail/crn2060

Ceballos-Sierra, F., y Dall'Erba, S. (2021). The effect of climate variability on Colombian coffee productivity: A dynamic panel model approach. Agricultural Systems, (190), 103-126. https://doi.org/10.1016/j.agsy.2021.103126

Comisión Nacional del Agua [Conagua] (2022). Base de datos de información termopluviométrica. México: Conagua.

Comisión Nacional para el Conocimiento y Uso de la Biodiversidad [Conabio] (1995). Edafología, escalas 1:250000 - 1:1000000. México: Instituto Nacional de Investigaciones Forestales y Agropecuarias y la Comisión Nacional para el Conocimiento y Uso de la Biodiversidad.

Craparo, A., Van Asten, A., Läderach, P., Jassogne, L., y Grab, S. (2015). Coffea arabica yields decline in Tanzania due to climate change: Global implications. Agricultural and Forest Meteorology, (207), 1-10. https://doi.org/10.1016/j.agrformet.2015.03.005

Chemura, A., Mahoya, C., Chidoko, P., y Kutywayo, D. (2014). Effect of soil moisture deficit stress on biomass accumulation of four coffee (Coffea arabica) varieties in Zimbabwe. ISRN Agronomy. 1-10. https://doi.org/10.1155/2014/767312

Chengappa, P., Devika, C., y Rudragouda, C. (2017). Climate variability and mitigation: Perceptions and strategies adopted by traditional coffee growers in India. Climate and Development, (9), 593-604. https://doi.org/10.1080/17565529.2017.1318740

DaMatta, M., y Cochicho, J. (2006). Impacts of drought and temperature stress on coffee physiology and production: A review. Brazilian Journal of Plant Physiology, 18(1), 55-81. https://doi.org/10.1590/S1677-04202006000100006

Eakin, H., Tucker, C., y Castellanos, E. (2005). Market Shocks and Climate Variability: The Coffee Crisis in Mexico, Guatemala, and Honduras. Mountain Research and Development, 25(4), 304-309. https://doi.org/10.1659/0276- 4741(2005)025[0304:MSACVT]2.0.CO;2

Escalante, C., y Reyes, L. (2002). Técnicas Estadísticas en Hidrología. México: UNAM, Facultad de Ingeniería.

Frank, E., Eakin, H., y López, D. (2011). Social identity, perception and motivation in adaptation to climate risk in the coffee sector of Chiapas, Mexico. Global Enviromental Change (21), 66-76. https://doi.org/10.1016/j.gloenvcha.2010.11.001

Gay, C., Estrada, F., Conde, C., Eakin, H., y Villers, L. (2006). Potential impacts of climate change on agriculture: a case of study of coffee production in Veracruz, Mexico. Climatic Change, 79(3), 259-288. https://doi.org/10.1007/s10584-006-9066-x

Giddings, L., Soto, M., Rutherford, B. M., y Maarouf, A. (2005). Standardized precipitation index zones for Mexico. Atmósfera, 18(1), 33-56. https://www.redalyc.org/pdf/565/56518103.pdf

Granados-Ramírez, R., Barrios, M., de la Paz, M., y Peña, V. (2014). Variación y cambio climático en la vertiente del Golfo de México: Impactos en la cafeticultura. Revista mexicana de ciencias agrícolas, 5(3), 473-485. https://bit.ly/3lXPH30

Guerrero-Carrera, J., Jaramillo-Villanueva, J. L., Mora-Rivera, J., Bustamante-González, Á., Vargas-López, S., y Chulim-Estrella, N. (2020). Impacto del cambio climático sobre la producción de café. Tropical and Subtropical Agroecosystems, 23(71), 1-18. https://bit.ly/3xJZbl6

Gutiérrez-López, A. y Aparicio, J. (2020). Las seis reglas de la regionalización en hidrología. Aqua-LAC, 12(1), 81-89. Doi: 10.29104/phi-aqualac/2020-v12-1-07

Instituto Nacional de Estadística y Geografía [Inegi] (2005). II Conteo de Población y Vivienda. Marco geoestadístico municipal. México: Inegi.

Instituto Nacional de Estadística y Geografía [Inegi] (2013). Censo de Población y Vivienda 2010. Marco geoestadístico municipal. México: Inegi.

Jarju, A., y Solly, B. (2020). Analysis of the Efficiency of Precipitation on the Evolution of Agricultural Production in Upper-Casamance (South Senegal) between 1985 and 2018. The Eurasia Proceedings of Science Technology Engineering and Mathematics, (10), 1-11. https://dergipark.org.tr/en/pub/epstem/issue/58035/834956

Javadinejad, S., Dara, R., y Jafary, F. (2020). Evaluation of hydro-meteorological drought indices for characterizing historical and future droughts and their impact on groundwater. Resources Environment and Information Engineering, 2(1), 71-83. DOI: 10.25082/REIE.2020.01.003

Kubicz, J. (2018). The application of Standardized Precipitation Index (SPI) to monitor drought in surface and groundwaters. E3S Web of Conferences, (44), 1-8. https://doi.org/10.1051/e3sconf/20184400082

Liu, L., Hong, Y., Bednarczyk, C.N., Yong, B., Shafer, M.A., Riley, R., y Hocker J.E. (2012) Hydro-climatological drought analyses and projections using meteorological and hydrological drought indices: a case study in Blue River Basin, Oklahoma. Water Resources Management (26), 2761-2779. https://doi.org/10.1007/s11269-012-0044-y

Marini, G., Fontana, N., y Mishra, A. (2019). Investigating drought in Apulia region, Italy using SPI and RDI. Theoretical and Applied Climatology, (137), 383-397. https://doi.org/10.1007/s00704-018-2604-4

Martínez, N. A. (2022). Análisis de la producción de café en la Huasteca potosina en el contexto nacional, 1989-2019. Revista De El Colegio De San Luis, 12(23). https://doi.org/10.21696/rcsl122320221370

Mbwambo, G., Mourice, K., y Tarimo, A. (2021). Climate Change Perceptions by Smallholder Coffee Farmers in the Northern and Southern Highlands of Tanzania. Climate, (9), 90. https://doi.org/ 10.3390/cli9060090

McKee, B., Doesken, J., y Kleist, J. (January, 1993). The relationship of drought frequency and duration to time scale. En Proceedings of the eighth Conference on Applied Climatology, Simposio dirigido por American Meteorological Society (AMS), Anaheim, CA, USA. https://climate.colostate.edu/pdfs/relationshipofdroughtfrequency.pdf

Mkonda, Y., He, X., y Festin, S. (2018). Comparing Smallholder Farmers’ Perception of Climate Change with Meteorological Data: Experiences from Seven Agro-Ecological Zones of Tanzania. Weather and Climate Extremes, (10), 435-452. https://doi.org/10.1016/j.wace.2016.12.001

Olvera, L. (2010). Análisis espacial y temporal de la propagación de la broca del café Hypothenemus hampei (Ferrari) en la Huasteca Potosina (Tesis de maestría en ciencias ambientales). Universidad Autónoma de San Luis Potosí. México.

Ortega, A., y Ramírez, B. (2013). Crisis de la cafeticultura y migración en el contexto de marginación. El caso de los productores indígenas de Huehuetla, Puebla. Ra Ximhai 9(1), 173-186. DOI: 10.35197/rx.09.01.e.2013.14.ao

Padilla, G., Rodríguez, L., Castorena, G., y Florescano, E. (1980). Análisis Histórico de las Sequías en México. México: Secretaría de Agricultura y Recurso Hidráulicos.

Parada-Molina, P., Pérez, C., Molina, R., y Cabrera, C. (2020). Efectos de la variabilidad de la precipitación en la fenología del café: caso zona cafetalera Xalapa-Coatepec, Veracruz, Mex. Ingeniería y Región, (24), 61-71. DOI: https://doi.org/10.25054/22161325.2752

Pham, Y., Reardon-Smith, K., Mushtaq, S., y Cockfield, G. (2019). The impact of climate change and variability on coffee production: a systematic review. Climatic Change (156), 609-630. https://doi.org/10.1007/s10584-019-02538-y

Pons, D., Muñoz, Á., Meléndez, M., Chocooj, M., Gómez, R., Chourio, X., y Romero, G. (2021). A coffee yield next-generation forecast system for rain-fed plantations: The case of the Samalá watershed in Guatemala. Weather and Forecasting, 36(6), 2021-2038. DOI: 10.1175/WAF-D-20-0133.1

Ramírez, B.; Jaramillo, R.; Arcila, P. (2010). Índice para evaluar el estado hídrico en los cafetales. Cenicafé, 61 (1), 55-66. https://biblioteca.cenicafe.org/handle/10778/46

Rivera-Silva, D., Nikolskii I., Castillo-Álvarez, M., Ordaz-Chaparro, V. M., Díaz-Padilla, G., y Guajardo-Panes, R. (2013). Vulnerabilidad de la Producción del Café (Coffea arabica L.) al Cambio Climático Global. Sociedad Mexicana de la Ciencia del Suelo, A.C. 31(4): 305-313. https://www.terralatinoamericana.org.mx/index.php/terra/article/view/272/217

Robles, H. (2011). Los Productores de Café en México: Problemática y Ejercicio del Presupuesto. Mexican Rural Development Research Reports, Reporte 14. Woodrow Wilson International Center for Scholars. https://bit.ly/3ygtLTP

Ruiz-García, P., Conde-Álvarez, C., Gómez-Díaz, J.D. y Monterroso-Rivas, A.I. (2021) Projections of Local Knowledge-Based Adaptation Strategies of Mexican Coffee Farmers. Climate, 9(4), 60. 1-17. https://doi.org/10.3390/cli9040060

Sainz de la Maza, M. y del Jesús, M. (2020). Analysis of historical droughts through their induced impacts. Ingeniería del agua, 24(3), 141-156. https://doi.org/10.4995/Ia.2020.12182

Santacruz, G. (2019). Sequía en el ejido Ojo de Agua, zona tének, Ciudad Valles, San Luis Potosí. En F. Peña (coord.), Aguas turbulentas y prácticas locales y comunitarias en la huasteca, riesgos hídricos y organización social (pp. 121-147). San Luis Potosí: El Colegio de San Luis, A.C.

Schwabe, K., Albiac-Murillo, J., Connor, J.D., Hassan, R. y Meza González, L. (Ed.). (2013). Drought in Arid and Semi-Arid Regions. A Multi-Disciplinary and Cross-Country Perspective; Berlin/Heidelberg, Germany, Springer.

Servicio de Información Agroalimentaria y Pesquera [SIAP] (2022). Base de datos de información de superficie sembrada y cosechada por ciclo agrícola. México: SIAP.

Tucker, C., Eakin, H., y Castellanos, E. (2010). Perceptions of risk and adaptation: Coffee producers, market shocks, and extreme weather in Central America and Mexico. Global Environmental Change, (20): 23-32. https://doi.org/10.1016/j.gloenvcha.2009.07.006

Usangabandi, A. (2021). Assessing the impact of climate variability on coffee production in Rwanda 2001-2015 (Tesis para doctorado), College of Science and Technology. Universidad de Rwanda. http://dr.ur.ac.rw/handle/123456789/1377

Viguera, B., Alpízar, F., Harvey, A., Martínez-Rodríguez, R., y Saborío-Rodríguez, M. (2019). Percepciones de cambio climático y respuestas adaptativas de caficultores costarricenses de pequeña escala. Agronomía Mesoamericana, 30(2), 333-351. DOI 10.15517/AM.V30I2.32905

Wagner, S., Jassogne, L., Price, E., Jones, M., y Preziosi, R. (2021). Impact of climate change on the production of coffea arabica at Mt. Kilimanjaro, Tanzania. Agriculture, 11(1), 53. https://doi.org/10.3390/agriculture11010053

Wang, Y., Zhao, W., Zhang, Q., y Yao, B. (2019). Characteristics of drought vulnerability for maize in the eastern part of Northwest China. Scientific reports, 9(1), 1-9. https://doi.org/10.1038/s41598-018-37362-4

Xiao, W. (2021). Impacts of Climate Change on Perennial Crops: An Empirical Study of Latin American Coffee Production. https://ageconsearch.umn.edu/

Yalt, S., y Aksu, H. (2019). Drought Analysis of Iğdır Turkey. Turkish Journal of Agriculture-Food Science and Technology, 7(12), 2227-2232. DOI: https://doi.org/10.24925/turjaf.v7i12.2227-2232.3004

Zuur, F., Leno, N., y Smith, M. (2007). Principal component analysis and redundancy analysis. En Gail M., y Samet, J. (Ed.) Analysing Ecological Data. Statistics for Biology and Health., Nueva York, Springer (pp. 193-224). https://doi.org/10.1007/978-0-387-45972-1_12