Antibacterial Effectiveness of a Silver-Copper Nano-Coating to Improve Personal Protective Equipment Used in the Medical and Dental Fields
Main Article Content
Abstract
Introduction: Personal protective equipment is used to protect healthcare personnel, such as doctors and dentists, from contact with potentially pathogenic microorganisms that may be present in aerosols generated by fluids like blood and saliva. Objective: To evaluate the antibacterial effect of the silver-copper nano-coating (SakCu®) deposited on polypropylene textiles on bacterial species frequently associated with nosocomial infections and microorganisms from subgingival biofilm samples of patients with periodontitis, simulating contact with contaminated droplets generated during dental care. Materials and Methods: The in vitro experimental study was carried out by means of tests with nosocomial strains of the following bacterial species: Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Staphylococcus epidermidis. For the clinical trials, subgingival biofilm samples were taken from five patients diagnosed with periodontitis. All tests consisted of maintaining contact of the microorganisms with the nano-coating for 24 hours. Results: The results showed a decrease in the cell viability of nosocomial strains when they were in contact with the nano-coating, with P. aeruginosa being the bacteria that presented the greatest sensitivity to contact, followed by S. epidermidis and S. aureus. However, E. coli appeared to be unaffected by the nano-coating. Regarding the evaluation of bacteria from the subgingival biofilm samples, there was a decrease of between 32.9% and 80% in the number of microorganisms that were exposed to the nano-coating, compared to the number of bacteria present on the uncoated polypropylene textiles. Conclusions: The results demonstrate the potential of silver-copper nano-coating for the use in personal protective equipment made from polypropylene textiles, such as gowns, caps, and face masks, commonly used in clinical settings.
Article Details
Citas en Dimensions Service
References
Glatter KA, Finkelman P. History of the plague: An ancient pandemic for the age of COVID-19. Am J Med. 2021; 134(2): 176-181. DOI: 10.1016/j.amjmed.2020.08.019
Honda H, Iwata K. Personal protective equipment and improving compliance among healthcare workers in high-risk settings. Curr Opin Infect Dis. 2016; 29(4): 400-406. DOI: 10.1097/qco.0000000000000280
Amato A, Caggiano M, Amato M, Moccia G, Capunzo M, De Caro F. Infection control in dental practice during the COVID-19 pandemic. Int J Environ Res Public Health. 2020; 17(13): 4769. DOI: 10.3390/ijerph17134769
Aas JA, Paster BJ, Stokes LN, Olsen I, Dewhirst FE. Defining the normal bacterial flora of the oral cavity. J Clin Microbiol. 2005; 43(11): 5721-5732. DOI: 10.1128/jcm.43.11.5721-5732.2005
Sanz M, Herrera D, Kebschull M, Chapple I, Jepsen S, Beglundh T, et al. Treatment of stage I-III periodontitis – the EFP S3 level clinical practice guideline. J Clin Periodontol. 2020; 47(S22): 4-60. DOI: 10.1111/jcpe.13290
Rautemaa R, Nordberg A, Wuolijoki-Saaristo K, Meurman JH. Bacterial aerosols in dental practice – a potential hospital infection problem? J Hosp Infect. 2006; 64(1): 76-81. DOI: 10.1016/j.jhin.2006.04.011
Chatoutsidou SE, Saridaki A, Raisi L, Katsivela E, Tsiamis G, Zografakis M, et al. Airborne particles and microorganisms in a dental clinic: Variability of indoor concentrations, impact of dental procedures, and personal exposure during everyday practice. Indoor Air. 2021; 31(4): 1164-1177. DOI: 10.1111/ina.12820
Mirhoseini SH, Koolivand A, Bayani M, Sarlak H, Moradzadeh R, Ghamari F, et al. Quantitative and qualitative assessment of microbial aerosols in different indoor environments of a dental school clinic. Aerobiologia. 2021; 37(2): 217-224. DOI: 10.1007/s10453-020-09679-z
Kramer A, Schwebke I, Kampf G. How long do nosocomial pathogens persist on inanimate surfaces? A systematic review. BMC Infect Dis. 2006; 6(1): 130. DOI: 10.1186/1471-2334-6-130
Wissmann JE, Kirchhoff L, Brüggemann Y, Todt D, Steinmann J, Steinmann E. Persistence of pathogens on inanimate surfaces: a narrative review. Microorganisms. 2021; 9(2): 343. DOI. 10.3390/microorganisms9020343
Gund MP, Naim J, Rupf S, Gärtner B, Hannig M. Bacterial contamination potential of personal protective equipment itself in dental aerosol-producing treatments. Odontology. 2024; 112(2): 309-316. DOI: 10.1007/s10266-023-00848-3
Wan Q, Han L, Yang X, Yu S, Zheng X. Dental professionals' use of personal protective equipment during COVID-19: A cross-sectional study in China. Front Public Health. 2023; 11: 1183580. DOI: 10.3389/fpubh.2023.1183580
Maddah HA. Polypropylene as a promising plastic: A review. Am J Polym Sci. 2016; 6(1): 1-11. DOI: 10.5923/j.ajps.20160601.01
Centers for Diseases Control and Prevention. Summary of infection prevention practices in dental settings: basic expectations for safe care. Atlanta, GA: CDC, Dept of Health and Human Services, 2016: 6-15. Disponible en: https://www.cdc.gov/dental-infection-control/media/pdfs/2024/07/safe-care2.pdf
Jung S, Yang JY, Byeon EY, Kim DG, Lee DG, Ryoo S, et al. Copper-coated polypropylene filter face mask with SARS-CoV-2 antiviral ability. Polymers. 2021; 13(9): 1367. DOI: 10.3390/polym13091367
López-Martín R, Rodrigo I, Ballesta C, Arias A, Mas A, Santos Burgos B, et al. Effectiveness of silver nanoparticles deposited in facemask material for neutralising viruses. Nanomaterials. 2022; 12(15): 2662. DOI: 10.3390/nano12152662
Bello-Lopez JM, Silva-Bermudez P, Prado G, Martínez A, Ibáñez-Cervantes G, Cureño-Díaz MA, et al. Biocide effect against SARS-CoV-2 and ESKAPE pathogens of a noncytotoxic silver-copper nanofilm. Biomed Mater. 2021; 17(1): 015002. DOI: 10.1088/1748-605X/ac3208
Reyes-Carmona L, Sepúlveda-Robles OA, Almaguer-Flores A, Bello-Lopez JM, Ramos-Vilchis C, Rodil SE. Antimicrobial activity of silver-copper coating against aerosols containing surrogate respiratory viruses and bacteria. PLoS One. 2023; 18(12): e0294972. DOI: 10.1371/journal.pone.0294972
Oh YJ, Hong J. Application of the MTT-based colorimetric method for evaluating bacterial growth using different solvent systems. LWT. 2022; 153: 112565. DOI: 10.1016/j.lwt.2021.112565
Haffajee AD, Socransky SS, Goodson JM. Clinical parameters as predictors of destructive periodontal disease activity. J Clin Periodontol. 1983; 10(3): 257-265. DOI: 10.1111/j.1600-051x.1983.tb01274.x
Almaguer-Flores A, Moreno-Borjas JY, Salgado-Martinez A, Sanchez-Reyes MA, Alcantara-Maruri E, Ximenez-Fyvie LA. Proportion of antibiotic resistance in subgingival plaque samples from Mexican subjects. J Clin Periodontol. 2006; 33(10): 743-748. DOI: 10.1111/j.1600-051X.2006.00975.x
Reyes-Carmona L, Camps E, Campos-González E, Mercado-Celis G, Cervantes-Garduño A, Pérez-Ibarra EA, et al. Antimicrobial evaluation of bismuth subsalicylate nanoparticles synthesized by laser ablation against clinical oral microorganisms. Opt Laser Technol. 2023; 158: 108930. DOI: 10.1016/j.optlastec.2022.108930
Tan XQ, Liu JY, Niu JR, Liu JY, Tian JY. Recent progress in magnetron sputtering technology used on fabrics. Materials. 2018; 11(10): 1953. DOI: 10.3390/ma11101953
Markowska-Szczupak A, Paszkiewicz O, Michalkiewicz B, Kamińska A, Wróbel RJ. Fabrication of antibacterial metal surfaces using magnetron-sputtering method. Materials. 2021; 14(23): 7301. DOI: 10.3390/ma14237301
Kollef MH, Torres A, Shorr AF, Martin-Loeches I, Micek ST. Nosocomial infection. Crit Care Med. 2021; 49(2): 169-187. DOI: 10.1097/ccm.0000000000004783
Vincent JL. Nosocomial infections in adult intensive-care units. The Lancet. 2003; 361(9374): 2068-2077.DOI: 10.1016/S0140-6736(03)13644-6
Pormohammad A, Turner RJ. Silver antibacterial synergism activities with eight other metal(loid)-based antimicrobials against Escherichia coli, pseudomonas aeruginosa, and Staphylococcus aureus. Antibiotics. 2020; 9(12): 853. DOI: 10.3390/antibiotics9120853
Jang J, Lee JM, Oh SB, Choi Y, Jung HS, Choi J. Development of antibiofilm nanocomposites: Ag/Cu bimetallic nanoparticles synthesized on the surface of graphene oxide nanosheets. ACS Appl Mater Interfaces. 2020; 12(32): 35826-35834. DOI: 10.1021/acsami.0c06054
Takahashi C, Yamada T, Yagi S, Murai T, Muto S. Preparation of silver-decorated Soluplus® nanoparticles and antibacterial activity towards S. epidermidis biofilms as characterized by STEM-CL spectroscopy. Mater Sci Eng C. 2021; 121: 111718. DOI: 10.1016/j.msec.2020.111718
Adnan M, Sousa AM, Machado I, Pereira MO, Khan S, Morton G, et al. Role of bolA and rpoS genes in biofilm formation and adherence pattern by Escherichia coli K-12 MG1655 on polypropylene, stainless steel, and silicone surfaces. Acta Microbiol Immunol Hung. 2017; 64(2): 179-189. DOI: 10.1556/030.63.2016.018
Varshney S, Sain A, Gupta D, Sharma S. Factors affecting bacterial adhesion on selected textile fibres. Indian J Microbiology. 2021; 61(1): 31-37. https://link.springer.com/article/10.1007/s12088-020-00903-5
Souque C, Gonzalez Ojeda I, Baym M. From Petri dishes to patients to populations: Scales and evolutionary mechanisms driving antibiotic resistance. Annu Rev Microbiol. 2024; 78: 361-382. DOI: 10.1146/annurev-micro-041522-102707
Maillard JY, Pascoe M. Disinfectants and antiseptics: Mechanisms of action and resistance. Nat Rev Microbiol. 2024; 22(1): 4-17. DOI: 10.1038/s41579-023-00958-3
Socransky SS, Haffajee AD. Periodontal microbial ecology. Periodontol 2000. 2005; 38(1): 135-187. DOI: 10.1111/j.1600-0757.2005.00107.x
Koh WJ, Lee JH, Kwon YS, Lee KS, Suh GY, Chung MP, et al. Prevalence of gastroesophageal reflux disease in patients with nontuberculous mycobacterial lung disease. Chest. 2007; 131(6): 1825-1830. DOI: 10.1378/chest.06-2280
Cvejic L, Harding R, Churchward T, Turton A, Finlay P, Massey D, et al. Laryngeal penetration and aspiration in individuals with stable COPD. Respirology. 2011; 16(2): 269-275. DOI: 10.1111/j.1440-1843.2010.01875.x
Pathak JL, Yan Y, Zhang Q, Wang L, Ge L. The role of oral microbiome in respiratory health and diseases. Respir Med. 2021; 185: 106475. DOI: 10.1016/j.rmed.2021.106475
Yin IX, Zhang J, Zhao IS, Mei ML, Li Q, Chu CH. The antibacterial mechanism of silver nanoparticles and its application in dentistry. Int J Nanomedicine. 2020; 15: 2555-2562. DOI: 10.2147/ijn.S246764
Xu VW, Nizami MZI, Yin IX, Yu OY, Lung CYK, Chu CH. Application of copper nanoparticles in dentistry. Nanomaterials. 2022; 12(5): 805. DOI: 10.3390/nano12050805

Revista Odontológica Mexicana por Universidad Nacional Autónoma de México se distribuye bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivar 4.0 Internacional.
Basada en una obra en http://revistas.unam.mx/index.php/rom.