Analysis of the Superficial Morphology of Orthodontic Mini Implants Using Scanning Electron Microscopy and Energy Dispersive X-Ray Spectroscopy
Main Article Content
Abstract
Introduction: Mini implants have simplified the biomechanic movements during an orthodontic treatment. The roughness, surface morphology, and individual characteristics relate to the pullout resistance and primary stability of mini implants during dental movement. Objective. To evaluate the surface morphology and the chemical elemental composition of four brands of mini-implants using scanning electron microscopy (sem) and energy-dispersive X-ray spectroscopy (eds). Materials and methods: Four mini-implants commercially available in México (n=5 of each): m.o.s.a.s. (Dewimed®), Implant quick (Borgatta), Vector tas (Ormco™) and OrthoEasy (Forestadent®) were evaluated. Surface morphology was assessed by sem (jeol 5600LV, Japan) with secondary electrons in high vacuum mode (20 keV). eds analyses were performed with 45 readings per group. Results: The analyzed brands presented homogenous polished zones, with few marks of the manufacturing processes. OrthoEasy shows the lowest conicity with 0.02°, followed by Implant quick and Vector tas with 0.04°. The principal element in all brands was Titanium with 84.3-82.8%, the Aluminum content was between 11.3-12.8 %, and the Vanadium content was 4.3-4.4% (anova, p>0.05). Discussion: The percentage of aluminum is higher than the 5.5-6.5% established in the astm F-136-08 standard. It is not a common element in the human body. Conclusion: The main differences in the mini implant morphology are the thread and the form of the tip. The chemical elemental composition is homogeneous, but the aluminum content is higher than the specified by the astm F-136-08 standard.
Article Details
Citas en Dimensions Service
References
Lim HM, Park YC, Lee KJ, Kim KH, Choi YJ. Stability of dental, alveolar, and skeletal changes after miniscrew-assisted rapid palatal expansion. Korean J Orthod. 2017; 47(5): 313-322. DOI: 10.4041/kjod.2017.47.5.313
Mohamed RN, Basha S, Al-Thomali Y. Maxillary molar distalization with miniscrew-supported appliances in Class II malocclusion: A systematic review. Angle Orthod. 2018, 88(4): 494-502. DOI: 10.2319/091717-624.1
Baumgaertel S, Smuthkochorn S, Palomo JM. Intrusion method for a single overerupted maxillary molar using only palatal mini-implants and partial fixed appliances. Am J Orthod Dentofacial Orthop. 2016; 149(3): 411-415. DOI: 10.1016/j.ajodo.2015.10.016
Antelo OM, Meira TM, Oliveira DD, Pithon MM, Tanaka OM. Long-term stability of a Class III malocclusion with severe anterior open bite and bilateral posterior crossbite in a hyperdivergent patient. Am J Orthod Dentofacial Orthop. 2020; 157(3): 408-421. DOI: 10.1016/j.ajodo.2018.10.029
Nucera R, Lo Giudice A, Bellocchio AM, Spinuzza P, Caprioglio A, Perillo L, et al. Bone and cortical bone thickness of mandibular buccal shelf for mini-screw insertion in adults. Angle Orthod. 2017; 87(5): 745-751. DOI: 10.2319/011117-34.1
Albogha MH, Takahashi I. Generic finite element models of orthodontic mini-implants: Are they reliable? J Biomech. 2015; 48(14): 3751-3756. DOI: 10.1016/j.jbiomech.2015.08.015
Tamilselvi S, Raman V, Rajendran N. Corrosion behaviour of Ti-6Al-7Nb and Ti-6Al-4V ELI alloys in the simulated body fluid solution by electrochemical impedance spectroscopy. Electrochim Acta. 2006; 52(3): 839-846. DOI: 10.1016/j.electacta.2006.06.018
Yoneyama Y, Matsuno T, Hashimoto Y, Satoh T. In vitro evaluation of H2O2 hydrothermal treatment of aged titanium surface to enhance biofunctional activity. Dent Mater J. 2013; 32(1): 115-121. DOI: 10.4012/dmj.2012-087
Camero S, Talavera I, González G, Réquiz R, Rosales A, Suárez M, et al. Estudio de la corrosión de una aleación Ti6Al4V utilizada como biomaterial. Rev Fac Ing UCV. 2008; 23(3): 27-34. http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0798-40652008000300003&lng=es&nrm=iso&tlng=es
Bollero P, Di Fazio V, Pavoni C, Cordaro M, Cozza P, Lione R. Titanium alloy vs. stainless steel miniscrews: An in vivo split-mouth study. Eur Rev Med Pharmacol Sci. 2018; 22(8): 2191-2198. DOI: 10.26355/eurrev_201804_14803
Niinomi M, Liu Y, Nakai M, Liu H, Li H. Biomedical titanium alloys with Young’s moduli close to that of cortical bone. Regen Biomater. 2016; 3(3): 173-185. DOI: 10.1093/rb/rbw016
Sivamurthy G, Sundari S. Stress distribution patterns at mini-implant site during retraction and intrusion — a three-dimensional finite element study. Prog Orthod. 2016; 17: 4. DOI: 10.1186/s40510-016-0117-1
Schuster JM, Schvezov CE, Rosenberger MR. Influence of experimental variables on the measure of contact angle in metals using the sessile drop method. Procedia Materials Science. 2015; 8: 742-751. DOI: 10.1016/j.mspro.2015.04.131
Parirokh M, Asgary S, Eghbal MJ. An energy-dispersive X-ray analysis and SEM study of debris remaining on endodontic instruments after ultrasonic cleaning and autoclave sterilization. Aust Endod J. 2005; 31(2): 53-58. DOI: 10.1111/j.1747-4477.2005.tb00222.x
Rack HJ, Qazi JI. Titanium alloys for biomedical applications. Mater Sci Eng C. 2006; 26(8): 1269-1277. DOI: 10.1016/j.msec.2005.08.032
Huo WT, Zhao LZ, Zhang W, Lu JW, Zhao YQ, Zhang YS. In vitro corrosion behavior and biocompatibility of nanostructured Ti6Al4V. Mater Sci Eng C. 2018; 92: 268-279. DOI: 10.1016/j.msec.2018.06.061
Zhang LC, Chen LY. A review on biomedical titanium alloys: Recent progress and prospect. Adv Eng Mater. 2019; 21(4): 1-29. DOI: 10.1002/adem.201801215
Morais LS, Serra GG, Muller CA, Andrade LR, Palermo EFA, Elias CN, et al. Titanium alloy mini-implants for orthodontic anchorage: Immediate loading and metal ion release. Acta Biomater. 2007; 3(3): 331-339. DOI: 10.1016/j.actbio.2006.10.010
Hanawa T. Metal ion release from metal implants. Mater Sci Eng C. 2004; 24(6-8): 745-752. DOI: 10.1016/j.msec.2004.08.018
Al-Mobarak NA, Al-Swayih A, Al-Rashoud FA. Corrosion behavior of Ti-6Al-7Nb alloy in biological solution for dentistry applications. Int J Electrochem Sci. 2011; 6(6): 2031-2042. DOI: 10.1016/S1452-3981(23)18165-X
ASTM International. F136 Standard specification for wrought Titanium-6Aluminum-4Vanadium ELI (extra low interstitial) alloy for surgical implant applications (UNS R56401). [Internet]. https://compass.astm.org/document/?contentCode=ASTM%7CF0136-13R21E01%7Cen-US&proxycl=https%3A%2F%2Fsecure.astm.org&fromLogin=true
Patil P, Kharbanda OP, Duggal R, Das TK, Kalyanasundaram D. Surface deterioration and elemental composition of retrieved orthodontic miniscrews. Am J Orthod Dentofacial Orthop. 2015; 147(4 Suppl): S88-S100. DOI: 10.1016/j.ajodo.2014.10.034
Yu L, Wu J, Zhai Q, Tian F, Zhao J, Zhang H, et al. Metabolomic analysis reveals the mechanism of aluminum cytotoxicity in HT-29 cells. PeerJ. 2019; 7: e7524 DOI: 10.7717/peerj.7524
Klotz K, Weistenhöfer W, Neff F, Hartwig A, Van Thriel C, Drexler H. The health effects of aluminum exposure. Dtsch Arztebl Int. 2017; 114(39): 653-659. DOI: 10.3238/arztebl.2017.0653
Martín-Cameán A, Jos A, Puerto M, Calleja A, Iglesias-Linares A, Solano E, et al. In vivo determination of aluminum, cobalt, chromium, copper, nickel, titanium, and vanadium in oral mucosa cells from orthodontic patients with mini-implants by Inductively coupled plasma-mass spectrometry (ICP-MS). J Trace Elem Med Biol. 2015; 32: 13-20. DOI: 10.1016/j.jtemb.2015.05.001
Silverstein J, Barreto O, França R. Miniscrews for orthodontic anchorage : nanoscale chemical surface analyses. Eur J Orthod. 2016; 38(2): 146-153. DOI: 10.1093/ejo/cjv007
Chang JZC, Chen YJ, Tung YY, Chiang YY, Lai EHH, Chen WP, et al. Effects of thread depth, taper shape, and taper length on the mechanical properties of mini-implants. Am J Orthod Dentofacial Orthop. 2012; 141(3): 279-288. DOI: 10.1016/j.ajodo.2011.09.008
Duaibis R, Kusnoto B, Natarajan R, Zhao L, Evans C. Factors affecting stresses in cortical bone around miniscrew implants: A three-dimensional finite element study. Angle Orthod. 2012; 82(5): 875-880. DOI: 10.2319/111011-696.1
Marigo G, Elias CN, Marigo M. Surface analysis of 2 orthodontic mini-implants after clinical use. Am J Orthod Dentofacial Orthop. 2016; 150(1): 89-97. DOI: 10.1016/j.ajodo.2015.12.012
Caetano PL, Bahia MS, da Fonseca e Silva E, Vitral RWF, Campos MJS. Corrosion resistance and surface characterization of miniscrews removed from orthodontic patients. Rev Port Estomatol Med Dent Cir Maxilofac. 2019; 60(1): 1-7. https://pdfs.semanticscholar.org/d0ca/b53ee094e555b42039d7c81a9b60e2dc62b9.pdf
Squeff LR, Simonson MBA, Elias CN, Nojima LI. Caracterização de mini-implantes utilizados na ancoragem ortodôntica [Characterization of the mini-implants used to orthodontic anchorage]. Rev Dent Press Ortodon Ortop Facial. 2008; 13(5): 49-56. DOI: 10.1590/S1415-54192008000500006
Alavi S, Asadi F, Raji SAH, Samie S. Effect of steam and dry heat sterilization on the insertion and fracture torque of orthodontic miniscrews. Dent Res J (Isfahan). 2020; 17(3): 219-224. https://journals.lww.com/derj/_layouts/15/oaks.journals/downloadpdf.aspx?an=01439444-202017030-00009
Mattos CT, Ruellas AC, Sant’Anna EF. Effect of autoclaving on the fracture torque of mini-implants used for orthodontic anchorage. J Orthod. 2011; 38(1): 15-20. DOI: 10.1179/14653121141200
Kitahara-Céia FMF, Assad-Loss TF, Mucha JN, Elias CN. Morphological evaluation of the active tip of six types of orthodontic mini-implants. Dental Press J Orthod. 2013; 18(2): 36-41. DOI: 10.1590/s2176-94512013000200012
AlSamak S, Bitsanis E, Makou M, Eliades G. Morphological and structural characteristics of orthodontic mini-implants. J Orofac Orthop. 2012; 73(1): 58-71. DOI: 10.1007/s00056-011-0061-0
Hergel CA, Acar YB, Ateş M, Küçükkeleş N. In-vitro evaluation of the effects of insertion and sterilization procedures on the mechanical and surface characteristics of mini screws. Eur Oral Res. 2019; 53(1): 25-31. DOI: 10.26650/eor.20197993
Pan CY, Chou ST, Tseng YC, Yang YH, Wu CY, Lan TH, et al. Influence of different implant materials on the primary stability of orthodontic mini-implants. Kaohsiung J Med Sci. 2012; 28(12): 673-678. DOI: 10.1016/j.kjms.2012.04.037
Brown RN, Sexton BE, Chu TMG, Katona TR, Stewart KT, Kyung HM, et al. Comparison of stainless steel and titanium alloy orthodontic miniscrew implants: A mechanical and histologic analysis. Am J Orthod Dentofacial Orthop. 2014; 145(4): 496-504. DOI: 10.1016/j.ajodo.2013.12.022
Yao CCJ, Chang HH, Chang JZC, Lai HH, Lu SC, Chen YJ. Revisiting the stability of mini-implants used for orthodontic anchorage. J Formos Med Assoc. 2015; 114(11): 1122-1128. DOI: 10.1016/j.jfma.2014.08.001
Eliades T, Zinelis S, Papadopoulos MA, Eliades G. Characterization of retrieved orthodontic miniscrew implants. Am J Orthod Dentofacial Orthop. 2009; 135(1): 10.e1-10.e7 DOI: 10.1016/j.ajodo.2008.06.019
Chen Y, Kyung HM, Gao L, Yu WJ, Bae EJ, Kim SM. Mechanical properties of self-drilling orthodontic micro-implants with different diameters. Angle Orthod. 2010; 80(5): 821-827. DOI: 10.2319/103009-607.1
Kim JW, Ahn SJ, Chang YI. Histomorphometric and mechanical analyses of the drill-free screw as orthodontic anchorage. Am J Orthod Dentofacial Orthop. 2005; 128(2): 190-194. DOI: 10.1016/j.ajodo.2004.01.030
Han CM, Watanabe K, Tsatalis AE, Lee D, Zheng F, Kyung HM, et al. Evaluations of miniscrew type-dependent mechanical stability. Clin Biomech. 2019; 69: 21-27. DOI: 10.1016/j.clinbiomech.2019.06.016

Revista Odontológica Mexicana por Universidad Nacional Autónoma de México se distribuye bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivar 4.0 Internacional.
Basada en una obra en http://revistas.unam.mx/index.php/rom.