Materiales conductores de electrones y su impacto durante la producción anaerobia de metano

Contenido principal del artículo

Luis Humberto Álvarez Valencia
Vianey Ariadna Burboa Charis
Miriam Orrantia López

Resumen

Objetivo: revisar la literatura científica para conocer el impacto de materiales conductores a base de carbón y metálicos durante procesos de digestión anaerobia para la producción de metano.


Diseño metodológico: revisión de literatura científica para recopilar la información y datos presentados.


Resultados: análisis de resultados de procesos de digestión anaerobia con diferentes sustratos y materiales conductores, para identificar el incremento en la producción y rendimiento de metano, reducción de fase lag y producción de productor intermediarios.


Limitaciones de la investigación: se centra en el uso de materiales que promueven la producción de metano por digestión anaerobia.


Principales hallazgos: los materiales conductores permiten aumentar la producción de metano y reducir el tiempo de la fase lag, al promover la transferencia directa de electrones entre especies durante la digestión de materia orgánica simple y compleja.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Cómo citar
Álvarez Valencia, L. H., Burboa Charis, V. A., & Orrantia López, M. . (2023). Materiales conductores de electrones y su impacto durante la producción anaerobia de metano. Entreciencias: Diálogos En La Sociedad Del Conocimiento, 11(25), 1–17. https://doi.org/10.22201/enesl.20078064e.2023.25.85046
Biografía del autor/a

Luis Humberto Álvarez Valencia, Instituto Tecnológico de Sonora

Doctor en Ciencias Ambientales por el Instituto Potosino de Investigación Científica y Tecnológica. Profesor de tiempo completo del Departamento de Ciencias Agronómicas y Veterinarias del Instituto Tecnológico de Sonora. Es miembro del Sistema Nacional de Investigadores, nivel 2. Sus líneas de investigación son la biotransformación y biodegradación de compuestos recalcitrantes y la producción de bioenergía a partir de residuos agroindustriales.

Vianey Ariadna Burboa Charis, Instituto Tecnológico de Sonora

Doctora en Ciencias con especialidad en Biotecnología egresada del Instituto Tecnológico de Sonora. Actualmente es profesora de asignatura y posdoctorante del Departamento de Ciencias Agronómicas y Veterinarias del Instituto Tecnológico de Sonora. Es miembro del Sistema Nacional de Investigadores, nivel 1. Su línea de investigación es el manejo y aprovechamiento de residuos para la generación de bioenergía y tratamiento de aguas residuales.

Miriam Orrantia López, Instituto Tecnológico de Sonora

Maestra en Ingeniería de Sistemas egresada del Instituto Tecnológico de Sonora. Estudiante del Doctorado en Ciencias con especialidad en Biotecnología del Instituto Tecnológico de Sonora. Su línea de investigación es la producción de biocombustibles gaseosos a partir de residuos agropecuarios e industriales.

Citas

Acosta, Y. y Obaya, M. (2005). La digestión anaerobia. Aspectos teóricos. Parte I. Revista ICIDCA, 1, 35-48.

Ali, A., Mahar R. B. y Sherazi, S. T. H. (2020). Methane Augmentation of Anaerobic Digestion of Food Waste in the Presence of Fe3O4 and Carbamide Capped Fe3O4 Nanoparticles. Waste and Biomass Valorization, 11, 4093-4107.

Álvarez, J. A. (2003). Tratamiento anaerobio de aguas residuales urbanas en planta piloto. (Tesis doctoral). Departamento de Física, Química e Ingeniería Química. Universidad de Coruña.

Baek, G., Kim, J., Cho, K., Bae, H., y Lee, C. (2015). The Biostimulation of Anaerobic Digestion with (Semi)Conductive Ferric Oxides: Their Potential for Enhanced Biomethanation. Applied Microbiology And Biotechnology, 99(23), 10355-10366. doi: 10.1007/s00253-015-6900.

Buckel, W. y Thauer, R. K. (2013). Energy Conservation Via Electron Bifurcating Ferredoxin Reduction and Proton/Na+ Translocating Ferredoxin Oxidation. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1827(2), 94-113. doi: 10.1016/j.bbabio.2012.07.002.

Burboa‐Charis, V. A. y Alvarez, L. H. (2020). Methane Production from Antibiotic Bearing Swine Wastewater Using Carbon‐Based Materials as Electrons’ Conduits during Anaerobic Digestion. International Journal of Energy Research, 44(13), 10996-11005.

Chen, S., Rotaru, A., Shrestha, P. M., Malvankar, N. S., Liu, F., Fan, W., Nevin, K. P. y Lovley, D. R. (2014). Promoting Interspecies Electron Transfer with Biochar. Scientific Reports, 4, 5019. https://doi.org/10.1038/srep05019.

Chen, Y., Cheng, J. J. y Creamer, K. S. (2007). Inhibition of Anaerobic Digestion Process: A Review. Bioresource Technology, 99(10), 4044-4064. doi:10.1016/j.biortech.2007.01.057.

Cruz Viggi, C., Rossetti, S., Fazi, S., Paiano, P., Majone, M. y Aulenta, F. (2014). Magnetite Particles Triggering a Faster and More Robust Syntrophic Pathway of Methanogenic Propionate Degradation. Environmental Science and Technology, 48(13), 7536-7543. doi: 10.1021/es5016789.

Dang, Y., Holmes, D. E., Zhao, Z., Woodard, T. L., Sun, D., Wang, L., Nevin, K. P. y Lovley, D. R. (2016). Enhancing Anaerobic Digestion of Complex Organic Waste with Carbon-Based Conductive Materials. Bioresource Technology, 220, 516-522, http://dx.doi.org/10.1016/j.biortech.2016.08.114.

Fagbohungbe, M. O., Herbert, B. M. J., Hurst, L., Li, H., Shams, Q. y Semple, K. T. (2016). Impact of Biochar on the Anaerobic Digestion of Citrus Peel Waste. Bioresource Technology, 216, 142-149. http://dx.doi.org/10.1016/j.biortech.2016.04.106.

Fan, C., Zhang, J. y Zang, L. (2019). Improving Biohydrogen Evolution from Glucose with Magnetic Activated Carbon. Water, Air, & Soil Pollution, 230(5). doi:10.1007/s11270-019-4155-4.

Gujer, W. y Zehnder, A. J. B. (1983). Conversion Processes in Anaerobic Digestion. Water Science and Technology, 127-167.

Ha, P. T., Lindemann, S. R., Shi, L., Dohnalkova, A., Fredrickson, J. K., Madigan, M. T. y Beyenal, H. (2017). Syntrophic Anaerobic Photosynthesis Via Direct Interspecies Electron Transfer. Nature Communications, 8, 1-7. doi: 10.1038/ncomms13924.

Im, S., Yun, Y. M., Song, Y. C. y Kim, D. H. (2019). Enhanced Anaerobic Digestion of Glycerol by Promoting DIET Reaction. Biochemical Engineering Journal, 142, 18-26.

Jang, H. M., Choi, Y. K. y Kan, E. (2018). Effects of Dairy Manure-Derived Biochar on Psychrophilic, Mesophilic and Thermophilic Anaerobic Digestions of Dairy Manure. Bioresource Technology, 1(250), 927-931.

Junginger, M., De Visser, E., Hjort-Gregersen, K., Koornneef, J., Raven, R., Faaij, A. y Turkenburg, W. (2006). Technological Learning in Bioenergy Systems. Energy Policy, 34(18), 4024-4041. doi:10.1016/j.enpol.2005.09.012.

Kato, S. (2015). Biotechnological Aspects of Microbial Extracellular Electron Transfer. Microbes and Environments, 30(2), 133-139. doi:10.1264/jsme2.me15028.

Kato, S., Hashimoto, K. y Watanabe, K. (2012). Methanogenesis Facilitated by Electric Syntrophy Via (Semi)Conductive Iron-Oxide Minerals. Environmental Microbiology, 14: 1646-1654. doi: 10.1111/j.1462-2920.2011.02611.x.

Kracke, F., Vassilev, I. y Kromer, J. O. (2015). Microbial Electron Transport and Energy Conservation. The Foundation for Optimizing Bioelectrochemical Systems. Frontiers in Microbiology, 6. doi:10.3389/fmicb.2015.00575.

Leang, C., Qian, X., Mester, T. y Lovley, D. R. (2010). Alignment of the C-Type Cytochrome Omcs Along Pili of Geobacter Sulfurreducens. Applied and Environmental Microbiology, 76, 4080-4084. doi: 10.1128/AEM.00023-10.

Lee, J., Lee, S. y Park, H. (2016). Enrichment of Specific Electro-Active Microorganisms and Enhancement of Methane Production by Adding Granular Activated Carbon in Anaerobic Reactors. Bioresource Technology, 205, 205-212. http://dx.doi.org/10.1016/j.biortech.2016.01.054.

Li, H., Chang, J., Liu, P., Fu, L., Ding, D. y Lu, Y. (2020). Direct Interspecies Electron Transfer Accelerates Syntrophic Oxidation of Butyrate in Paddy Soil Enrichments. Environmental Microbiology, 17(5), 1533-1547. http://doi.wiley.com/10.1111/1462-2920.12576.

Li, Y., Chen, Y. y Wu, J. (2019). Enhancement of Methane Production in Anaerobic Digestion Process: A Review. Applied Energy, 240, 120-137. doi:10.1016/j.apenergy.2019.01.24.

Li, Y., Zhang, Y., Yang, Y., Quan, X. y Zhao, Z. (2017). Potentially Direct Interspecies Electron Transfer of Methanogenesis for Syntrophic Metabolism Under Sulfate Reducing Conditions with Stainless Steel. Bioresource Technology, 1(234), 303-309.

Lin, R., Cheng, J., Zhang, J., Zhou, J., Cen, K. y Murphy, J. D. (2017). Boosting Biomethane Yield and Production Rate with Graphene: The Potential of Direct Interspecies Electron Transfer in Anaerobic Digestion. Bioresource Technology, 239, 345-352. http://dx.doi.org/10.1016/j.biortech.2017.05.017.

Liu, F., Rotaru, A., Shrestha, P. M., Malvankar, N. S., Nevin, K. P. y Lovley, D. R. (2012a). Promoting Direct Interspecies Electron Transfer with Activated Carbon, Environmental Science, 8982-8989.

Liu, F., Rotaru, A., Shrestha, P. M., Malvankar, N. S., Nevina, K. P. y Lovley D. (2012b). Promoting Direct Interspecies Electron Transfer with Activated Carbon. Energy & Environmental Science, 5(10), 8982-8989. doi: 10.1039/c2ee22459c.

Lovley, D. R. (2017). Syntrophy Goes Electric: Direct Interspecies Electron Transfer. Annual Review of Microbiology, 71, 643-664. doi: 10.1146/annurev-micro-030117-020420.

Lü, F., Luo, C., Shao, L. y He, P. (2016). Biochar Alleviates Combined Stress of Ammonium and Acids by Firstly Enriching Methanosaeta and then Methanosarcina. Water Research, 90, 34-43. http://dx.doi.org/10.1016/j.watres.2015.12.029.

Luo, C. y Lu, F. (2014). Application of Eco-Compatible Biochar in Anaerobic Digestion to Relieve Acid Stress and Promote the Selective Colonization of Functional Microbes. Water Research, 68, 710-718. http://dx.doi.org/10.1016/j.watres.2014.10.052.

Malvankar, N. S., Vargas, M., Nevin, K. P., Franks, A. E., Leang, C., Kim, B.-C., Inoue, K., Mester, T., Covalla, S. F., Johnson, J. P., Rotello, V.

M., Tuominen M. T. y Lovley, D. (2011). Tunable Metallic-Like Conductivity in Microbial Nanowire Networks. Nature Nanotechnology, 6(9), 573-579. doi: 10.1038/nnano.2011.119.

Martins, G., Salvador, A. F., Pereira, L. y Alves, M. M. (2018). Methane Production and Conductive Materials: A Critical Review. Environmental Science and Technology, 52, 10241-10253. doi: 10.1021/acs.est.8b01913.

Martínez, C. M. y Alvarez, L. H. (2018). Application of Redox Mediators in Bioelectrochemical Systems. Biotechnology advances, 36(5), 1412-1423.

Morita, M., Malvankar, N. S., Franks, A. E., Summers, Z. M., Giloteaux, L., Rotaru, A. E. Rotaru, C. y Lovley, D. R. (2011). Potential for Direct Interspecies Electron Transfer in Methanogenic Wastewater Digester Aggregates. MBio, 2(4), 10-1128.

Mumme, J., Srocke, F., Heeg, K. y Werner, M. (2014). Use of Biochars in Anaerobic Digestion. Bioresource technology, 164, 189-197. http://dx.doi.org/10.1016/j.biortech.2014.05.008.

Münster, M. y Lund, H. (2010). Comparing Waste-to-Energy Technologies by Applying Energy System Analysis. Waste Management, 30, 1251-1263. doi: 10.1016/j.wasman.2009.07.001.

Park, J., Kang, H., Park, K. y Park, H. (2018). Direct Interspecies Electron Transfer Via Conductive Materials: A Perspective for Anaerobic Digestion Applications. Bioresource Technology, 254, 300-311. https://doi.org/10.1016/j.biortech.2018.01.095.

Parra, R. (2015). Digestión anaeróbica: mecanismos biotecnológicos en el tratamiento de aguas residuales y su aplicación en la industria. Producción + Limpia, 10(2), 142-159.

Peng, H., Zhang, Y., Tan, D., Zhao, Z., Zhao, H. y Quan, X. (2017). Roles of Magnetite and Granular Activated Carbon in Improvement of Anaerobic Sludge Digestion. Bioresource Technology, 249, 666-672.

Pham, T. H., Aelterman, P. y Verstraete, W. (2009). Bioanode Performance in Bioelectrochemical Systems: Recent Improvements and Prospects. Trends in Biotechnology, 27(3), 168-178. https://doi.org/10.1016/j.tibtech.2008.11.005.

Prehn M. y Cumana I. (2010). La bioenergia en Mexico: estudios de caso, 2010. Morelia: Red Mexicana de Bioenergía.

Qadeer, R. y Hanif, J. (1994). Kinetics of Zirconium Ions Adsorption on Activated Charcoal from Aqueous Solutions. Carbon, 32, 8, 1433-1439. https://doi.org/10.1016/0008-6223(94)90137-6.

Ren, G., Chen, P., Yu, J., Liu, J., Ye, J. y Zhou, S. (2019). Recyclable Magnetite-Enhanced Electromethanogenesis for Biomethane Production from Wastewater. Water Research, 166, 115095. https://doi.org/10.1016/j.watres.2019.115095.

Rotaru, A. E., Shrestha, P. M., Liu, F., Markovaite, B., Chen, S., Nevin, K. P. y Lovley, D. R. (2014). Direct Interspecies Electron Transfer Between Geobacter metallireducens and Methanosarcina barkeri. Applied and Environmental Microbiology, 80(15), 4599-4605. doi: 10.1128/AEM.00895-14.

Sharma, D., Mahajan, R. y Goel, G. (2019). Insights into Direct Interspecies Electron Transfer Mechanisms for Acceleration of Anaerobic Digestion of Wastes. International Journal of Environmental Science and Technology, 16(4), 2133-2142.

Stams, A. J. M., De Bok, F. A. M., Plugge, C. M., Van Eekert, M. H. A., Dolfing, J. y Schraa, G. (2006). Exocellular Electron Transfer in Anaerobic Microbial Communities. Environmental Microbiology, 8, 371-382. doi: 10.1111/j.1462-2920.2006.00989.x.

Summers, Z. M., Fogarty, H. E., Leang, C., Franks, A. E., Malvankar, N. S. y Lovley D. R. (2010). Direct Exchange of Electrons within Aggregates of an Evolved Syntrophic Coculture of Anaerobic Bacteria. Science, 80(330), 1413-1415. doi: 10.1126/science.1196526.

Teng, Z., Hua, J., Wang, C. y Lu, X. (2014). Design and Optimization Principles of Biogas Reactors in Large Scale Applications. Sustainable Energy Technology, 99-134.

Tian, T., Qiao, S., Li, X., Zhang, M. y Zhou, J. (2017). Nano-Graphene Induced Positive Effects on Methanogenesis in Anaerobic Digestion. Bioresource Technology, 224, 41-47. doi:10.1016/j.biortech.2016.10.058.

Van Lier, J. B., Mahmoud, N. y Zeeman, G. (2008). Anaerobic wastewater treatment. Biological wastewater treatment: principles, modelling and design. Londres: IWA, 415-456.

Wang, O., Zheng, S., Wang, B. y Wang, W. (2018). Necessity of Electrically Conductive Pili for Methanogenesis with Magnetite Stimulation. Peer J., 21, 6:e4541. doi: 10.7717/peerj.4541.

Wang, S., Yuan, R., Liu, C. y Zhou, B. (2020). Effect of Fe2+ Adding Period on the Biogas Production and Microbial Community Distribution during the Dry Anaerobic Digestion Process. Process Safety and Environmental Protection, 136, 234-241.

Watanabe, K. (2008). Recent Developments in Microbial Fuel Cell Technologies for Sustainable Bioenergy. Journal of Bioscience and Bioengineering, 106(6), 528-536. http://dx.doi.org/10.1263/jbb.106.528.

Weiland, P. (2010). Biogas Production: Current State and Perspectives. Applied Microbiology and Biotechnology, 85, 849-860.

Xu, S., He, C., Luo, L., Lü, F., He, P. y Cui, L. (2015). Comparing Activated Carbon of Different Particle Sizes on Enhancing Methane Generation in Upflow Anaerobic Digester. Bioresource Technology, 196, 606-612. http://dx.doi.org/10.1016/j.biortech.2015.08.018.

Xu, Y., Wang, M., Yu, Q. y Zhang, Y. (2020). Enhancing Methanogenesis from Anaerobic Digestion of Propionate with Addition of Fe Oxides Supported on Conductive Carbon Cloth. Bioresource technology, 302, 122796.

Yang, Y., Zhang, Y., Li, Z., Zhao, Z., Quan, X. y Zhao, Z. (2017). Adding Granular Activated Carbon into Anaerobic Sludge Digestion to Promote Methane Production and Sludge Decomposition. Journal of Cleaner Production, 149, 1101-1108. doi: 10.1016/J.JCLEPRO.2017.02.156.

Yenigun, O. y Demirel, B. (2013). Ammonia Inhibition in Anaerobic Digestion: A Review. Process Biochemistry, 48, 901-911.

Yin, Q., Yang, S., Wang, Z., Xing, L. y Wu, G. (2018). Clarifying Electron Transfer and Metagenomic Analysis of Microbial Community in the Methane Production Process with the Addition of Ferroferric Oxide. Chemical Engineering Journal, 333, 216-225. http://dx.doi.org/10.1016/j.cej.2017.09.160.

Zhang, J. y Lu, Y. (2016). Conductive Fe3O4 Nanoparticles Accelerate Syntrophic Methane Production from Butyrate Oxidation in Two Different Lake Sediments. Frontiers in Microbiology, 22(7):1316. doi: 10.3389/fmicb.2016.01316.

Zhang, J., Zhao, W., Zhang, H., Wang, Z., Fan, C. y Zang, L. (2018). Recent Achievements in Enhancing Anaerobic Digestion with Carbon-Based Functional Materials. Bioresource Technology, 266, 555–567. https://doi.org/10.1016/j.biortech.2018.07.076.

Zhang, M., Li, J. y Wang, Y. (2019). Impact of Biochar-Supported Zerovalent Iron Nanocomposite on the Anaerobic Digestion of Sewage Sludge. Environmental Science and Pollution Research, 26(10), 10292-10305.

Zhao, Z., Li, Y., Quan, X. y Zhang, Y. (2017). Towards Engineering Application: Potential Mechanism for Enhancing Anaerobic Digestion of Complex Organic Waste with Different Types of Conductive Materials. Water Research, 115, 266-277. doi:10.1016/j.watres.2017.02.067.

Zhao, Z., Zhang, Y., Woodard, T. L., Nevin, K. P. y Lovley, D. R. (2015). Enhancing Syntrophic Metabolism in Up-Flow Anaerobic Sludge Blanket Reactors with Conductive Carbon Materials. Bioresource technology, 191, 140-145. http://dx.doi.org/10.1016/j.biortech.2015.05.007.

Zhuang, L., Tang, J., Wang, Y., Hu, M. y Zhou, S. (2015). Conductive Iron Oxide Minerals Accelerate Syntrophic Cooperation in Methanogenic Benzoate Degradation. Journal of Hazardous Materials, 293(808), 37–45. http://dx.doi.org/10.1016/j.jhazmat.2015.03.039.