Efecto de bebidas ácidas en la resistencia a la flexión, microdureza y rugosidad en resinas compuestas

Contenido principal del artículo

Araceli Acevedo-Contreras
https://orcid.org/0009-0009-5241-6845
Abigailt Flores-Ledesma
https://orcid.org/0000-0002-8136-4820
Irandy del Rocio Herrera-Herrera
https://orcid.org/0009-0001-0729-2486
Yoshamin A. Moreno-Vargas
https://orcid.org/0000-0001-9181-7910
Miguel Ángel García
https://orcid.org/0000-0002-5320-159X
Jacqueline Adelina Rodríguez-Chávez
https://orcid.org/0000-0003-1010-5044
Gloria P. Perea-González
https://orcid.org/0000-0002-8173-2216

Resumen

Introducción: la ingesta de bebidas ácidas en la actualidad ha mostrado un efecto importante en la desmineralización de los tejidos dentales; adicionalmente, estas bebidas pueden afectar algunas propiedades en las resinas compuestas. Objetivo: comparar el efecto de las bebidas ácidas en la resistencia a la flexión, microdureza y rugosidad de resinas compuestas. Material y métodos: se elaboraron cuarenta barras de resina compuesta (Filtek™ Z250 XT Restaurador Universal Nano Hibrido, 3M™ ESPE) para evaluar la resistencia a la flexión (ISO 4049-2019) y sesenta discos, de los cuales veinte fueron usados para la prueba de microdureza y cuarenta para la prueba de rugosidad, distribuidas en 3 grupos de acuerdo con el tipo de bebida (G1=agua destilada, G2=Coca-Cola®, G3=Power Ade®). Las muestras fueron expuestas a las bebidas por 14 días durante 2 horas diarias y se mantuvieron almacenadas a 37° C. Se evaluó la microdureza en escala Vickers HV (50gf-30s). La rugosidad en Ra se evaluó con un rugosímetro (0.25mm/s- distancia de corte 0.25mm-5×). El pH de las bebidas se midió con un potenciómetro para relacionarlo con las pruebas físicas. Resultados: la resistencia a la flexión no mostró diferencias estadísticamente significativas entre grupos G1- 115MPa, G2- 107MPa y G3- 102MPa, en el módulo de elasticidad G1- 5.4GPa, G2- 6.3GPa y G3- 6.6GPa, p<0.05. En microdureza, se obtuvieron G1- 116HV 0.05/30, G2- 105HV 0.05/30 y G3- 113HV 0.05/30. En la rugosidad se observaron valores de Ra en G1- 0.46µm, G2- 0.28µm, y G3- 0.27µm, p<0.05. El pH fue de 7.01 en el G1, de 2.55 en G2 y 3.44 en G3. Conclusiones: la ingesta de las bebidas ácidas no afecta la resistencia a la flexión ni módulo de elasticidad de las resinas compuestas, pero si producen un cambio a nivel micrométrico como la microdureza superficial y la rugosidad.

Detalles del artículo

Cómo citar
Acevedo-Contreras, A., Flores-Ledesma, A., Herrera-Herrera, I. del R. . ., Moreno-Vargas, Y. A., García, M. Ángel ., Rodríguez-Chávez, J. A., & Perea-González, G. P. (2025). Efecto de bebidas ácidas en la resistencia a la flexión, microdureza y rugosidad en resinas compuestas. Revista Odontológica Mexicana Órgano Oficial De La Facultad De Odontología UNAM, 29(2). https://doi.org/10.22201/fo.1870199xp.2025.29.2.90719

Citas en Dimensions Service

Citas

Ferracane JL. Resin composite – state of the art. Dent Mater. 2011; 27(1): 29-38. DOI: 10.1016/j.dental.2010.10.020

Rodríguez HA, Kriven WM, Casanova H. Development of mechanical properties in dental resin composite: Effect of filler size and filler aggregation state. Mater Sci Eng C. 2019; 101: 274-282. DOI: 10.1016/j.msec.2019.03.090

Kowalska A, Sokolowski J, Gozdek T, Krasowski M, Kopacz K, Bociong K. The Influence of various photoinitiators on the properties of commercial dental composites. Polymers (Basel). 2021; 13(22): 3972-3989. DOI: 10.3390/polym13223972

Bilgili Can D, Özarslan M. Evaluation of color stability and microhardness of contemporary bulk-fill composite resins with different polymerization properties. J Esthet Restor Dent. 2022; 34(6): 924-932. DOI: 10.1111/jerd.12879

Melo ESP, Melo E, Arakaki D, Michels F, Nascimento VA. Methodology to quantify and screen the demineralization of teeth by immersing them in acidic drinks (orange juice, Coca-ColaTM, and grape juice): Evaluation by ICP OES. Molecules. 2021; 26(11): 3337. DOI: 10.3390/molecules26113337

Ghavri T, Pathak A, Bajwa NK. Comparative evaluation of the effect of different beverages on the surface roughness and microhardness of human enamel surface: An in vitro study. Int J Clin Pediatr Dent. 2021; 14(5): 657-661. DOI: 10.5005/jp-journals-10005-2011

Surarit R, Jiradethprapai K, Lertsatira K, Chanthongthiti J, Teanchai C, Horsophonphong S. Erosive potential of vitamin waters, herbal drinks, carbonated soft drinks, and fruit juices on human teeth: An in vitro investigation. J Dent Res Dent Clin Dent Prospects. 2023; 17(3): 129-135. DOI: 10.34172/joddd.2023.40413

Inchingolo AM, Malcangi G, Ferrante L, Del Vecchio G, Viapiano F, Mancini A, et al. Damage from carbonated soft drinks on enamel: A systematic review. Nutrients. 2023; 15(7): 1785-1803. DOI: 10.3390/nu15071785

Kumar N, Amin F, Hashem D, Khan S, Zaidi H, Rahman S, et al. Evaluating the pH of various commercially available beverages in Pakistan: Impact of highly acidic beverages on the surface hardness and weight loss of human teeth. Biomimetics. 2022; 7(3): 102-115. DOI: 10.3390/biomimetics7030102

Reddy A, Norris DF, Momeni SS, Waldo B, Ruby JD. The pH of beverages available to the American consumer. J Am Dent Assoc. 2015; 147(4): 255-263. DOI: 10.1016/j.adaj.2015.10.019

Gupta R, Madan M, Dua P, Saini S, Mangla R, Kainthla T, et al. Comparative evaluation of microhardness by common drinks on esthetic restorative materials and enamel: An in vitro study. Int J Clin Pediatr Dent. 2018; 11(3): 155-160. DOI: 10.5005/jp-journals-10005-1503

Swartz JB, Dahlsten DL. Sampling techniques and the use of Tang’s procedure in insect population dynamics studies. Popul Ecol. 1980; 21(2): 300-307. DOI: 10.1007/BF02513627

Kuehl RO. Diseño de experimentos: Principios estadísticos de diseño y análisis de investigación. México: Thomson Learning, 2001.

International Standards Organization. ISO 4049:2019 Dentistry – polymer-based restorative materials. Disponible en: https://www.iso.org/standard/67596.html

Alhashemi M, Mayo W, Alshaghel MM, Alsaman MZB, Kassem LH. Prevalence of obesity and its association with fast-food consumption and physical activity: A cross-sectional study and review of medical students’ obesity rate. Ann Med Surg (Lond). 2022; 79: 104007. DOI: 10.1016/j.amsu.2022.104007

Sarhan MM, Alhazmi HA. Fast food consumption and its relationship with oral health among US adults: A cross-sectional NHANES-based study. Saudi Dent J. 2024; 36(5): 728-732. DOI: 10.1016/j.sdentj.2024.02.021

Matumoto MSS, Terada RSS, Higashi DT, Fujimaki M, Suga SS, Guedes-Pinto AC. In vitro effect of energy drinks on human enamel surface. Rev. Odontol. UNESP. 2018; 47(1): 57-62. DOI: 10.1590/1807-2577.02118

Erdemir U, Yildiz E, Eren MM, Ozel S. Surface hardness evaluation of different composite resin materials: influence of sports and energy drinks immersion after a short-term period. J Appl Oral Sci. 2013; 21(2): 124-131. DOI: 10.1590/1678-7757201302185

Valinoti AC, Neves BG, da Silva EM, Maia LC. Surface degradation of composite resins by acidic medicines and pH-cycling. J Appl Oral Sci. 2008; 16(4): 257-265. DOI: 10.1590/S1678-77572008000400006

Gradinaru I, Vasiliu AL, Bargan A, Checherita LE, Ciubotaru BI, Armencia AO, et al. The influence of beverages on resin composites: An in vitro study. Biomedicines. 2023; 11(9): 2571. DOI: 10.3390/biomedicines11092571

Vejendla I, Pradeep S, Choudhari S, Adimulapu H S, Solete P. In vitro evaluation of the effects of different beverages on the surface microhardness of a single-shade universal composite. Cureus. 2023; 15(8): e43669. DOI: 10.7759/cureus.43669

Colombo M, Poggio C, Lasagna A, Chiesa M, Scribante A. Vickers micro-hardness of new restorative CAD/CAM dental materials: Evaluation and comparison after exposure to acidic drink. Materials (Basel). 2019; 12(8); 1246. DOI: 10.3390/ma12081246

Rathod A, Vadavadagi S, Verma T, Kumar P, Deepak PV, Deb S, et al. Effect of acidic beverages on color stability and microhardness of various esthetic restorative materials: A comparative study. J Pharm Bioallied Sci. 2021; 13(Suppl 2): S1084-S1087. DOI: 10.4103/jpbs.jpbs_189_21

Moyin S, Nagdev P, Kumar NN. Evaluation of the impact of acidic drink on the microhardness of different esthetic restorative materials: An in vitro study. J Contemp Dent Pract. 2020; 21(3): 233-237. DOI: 10.5005/jp-journals-10024-2753

Abouelmagd DM, Basheer RR. Microhardness evaluation of microhybrid versus nanofilled resin composite after exposure to acidic drinks. J Int Soc Prev Community Dent. 2022; 12(3): 353-359. DOI: 10.4103/jispcd.JISPCD_66_22

Barve D, Dave P, Gulve M, Saquib S, Das G, Sibghatullah M, et al. Assessment of microhardness and color stability of micro-hybrid and nano-filled composite resins. Niger J Clin Pract. 2021; 24(10): 1499-1505. DOI: 10.4103/njcp.njcp_632_20

Barve D, Dave PN, Gulve MN, Sahib MAKM, Naz F, Shahabe SA. Effect of commonly consumed beverages on microhardness of two types of composites. Int J Clin Pediatr Dent. 2020; 13(6): 663-667. DOI: 10.5005/jp-journals-10005-1854

Escobar LB, Pereira da Silva L, Manarte-Monteiro P. Fracture resistance of fiber-reinforced composite restorations: A systematic review and meta-analysis. Polymers (Basel). 2023; 15(18): 3802-3821. DOI: 10.3390/polym15183802

Scribante A, Bollardi M, Chiesa M, Poggio C, Colombo M. Flexural properties and elastic modulus of different esthetic restorative materials: Evaluation after exposure to acidic drink. Biomed Res Int. 2019; 2019: 5109481. DOI: 10.1155/2019/5109481

Scribante A, Gallo S, Scarantino S, Dagna A, Poggio C, Colombo M. Exposure of biomimetic composite materials to acidic challenges: Influence on flexural resistance and elastic modulus. Biomimetics (Basel). 2020; 5(4): 56. DOI: 10.3390/biomimetics5040056

Silva JP, Coelho A, Paula A, Amaro I, Saraiva J, Ferreira MM, et al. The influence of irrigation during the finishing and polishing of composite resin restorations – A systematic review of in vitro studies. Materials (Basel). 2021; 14(7): 1675. DOI: 10.3390/ma14071675

Tărăboanță I, Buhățel D, Brînză Concită CA, Andrian S, Nica I, Tărăboanță-Gamen AC, et al. Evaluation of the surface roughness of bulk-fill composite resins after submission to acidic and abrasive aggressions. Biomedicines. 2022; 10(5): 1008. DOI: 10.3390/biomedicines10051008

Borges MG, Soares CJ, Maia TS, Bicalho AA, Barbosa TP, Costa HL, et al. Effect of acidic drinks on shade matching, surface topography, and mechanical properties of conventional and bulk-fill composite resins. J Prosthet Dent. 2019; 121(5): 868.e1-868.e8. DOI: 10.1016/j.prosdent.2019.02.006

Alencar MF, Pereira MT, De-Moraes MDR, Santiago SL, Passos VF. The effects of intrinsic and extrinsic acids on nanofilled and bulk fill resin composites: Roughness, surface hardness, and scanning electron microscopy analysis. Microsc Res Tech. 2020; 83(2): 202-207. DOI: 10.1002/jemt.23403

Badra VV, Faraoni JJ, Ramos RP, Palma-Dibb RG. Influence of different beverages on the microhardness and surface roughness of resin composites. Oper Dent. 2005; 30(2): 213-219. Disponible en https://operative-dentistry.kglmeridian.com/meridian/operativedentistry/published/rest/pdf-watermark/v1/journals/odnt/30/2/article-p1.pdf/watermark-pdf/