Influence on the Number of Shock Waves and Pressure in Pulp Cells and Osteoblasts
Main Article Content
Abstract
Introduction: Biomedical applications of shock waves have been developed to treat various conditions. Objective: To evaluate the effectiveness of extracorporeal shock waves according to the pressure and number of waves applied to stimulate the proliferation of cultured human odontoblasts and dental pulp stem cells. Material and methods: Prospective, comparative, in vitro experimental study. Approximately 6×105 cells/ml of human bone and dental pulp cells were inoculated, and different numbers of shock waves were applied to randomly form 8 groups per cell type. Results: The number of shock waves and their positive pulse pressure influence cell viability. By applying 400 shock waves at a pressure of approximately 22 MPa to osteoblasts, a 50% increase in cell viability was obtained at 48 hours. Conclusions: The use of low pressure and a high number of shock waves increases cellular activity.
Article Details
Citas en Dimensions Service
References
Loske AM. Medical and Biomedical Applications of Shock Waves: The State of the Art and the Near Future. In: Ben-Dor G, Sadot O, Igra O (eds). 30th International Symposium on Shock Waves 1. Springer, Cham. DOI: 10.1007/978-3-319-46213-4_4
Haupt G. Use of extracorporeal shock waves in the treatment of pseudarthrosis, tendinopathy and other orthopedic diseases. J Urol. 1997;158(1):4–11. DOI: 10.1097/00005392-199707000-00003
Novak KF, Govindaswami M, Ebersole JL, Schaden W, House N, Novak MJ. Effects of low-energy shock waves on oral bacteria. J Dent Res. 2008; 87(10): 928–931. DOI: 10.1177/154405910808701009
Sathishkumar S, Meka A, Dawson D, House N, Schaden W, Novak MJ, et al. Extracorporeal shock wave therapy induces alveolar bone regeneration. J Dent Res. 2008; 87(7): 687–691. DOI: 10.1177/154405910808700703
Huang S, Xu L, Sun Y, Wu T, Wang K, Li G. An improved protocol for isolation and culture of mesenchymal stem cells from mouse bone marrow. J Orthop Translat. 2014; 3(1): 26–33. DOI: 10.1016/j.jot.2014.07.005
Wang CJ, Huang HY, Yang K, Wang FS, Wong M. Pathomechanism of shock wave induced injuries on femoral artery, vein and nerve. Injury. 2002; 33(5): 439-46. DOI: 10.1016/s0020-1383(02)00005-0
Wang CJ, Wang FS, Yang KD, Weng LH, Hsu CC, Huang CS, et al. Shock wave therapy induces neovascularization at the tendon-bone junction. A study in rabbits. J Orthop Res. 2003; 21(6): 984–989. DOI: 10.1016/S0736-0266(03)00104-9
Wang FS, Yang KD, Chen RF, Wang CJ, Sheen-Chen SM. Extracorporeal shock wave promotes growth and differentiation of bone-marrow stromal cells towards osteoprogenitors associated with induction of TGF-beta1. J Bone Joint Surg Br. 2002; 84(3):457–461. DOI: 10.1302/0301-620x.84b3.11609
Martini L, Giavaresi G, Fini M, Torricelli P, de Pretto M, Schaden W, et al. Effect of extracorporeal shock wave therapy on osteoblastlike cells. Clin Orthop Relat R. 2003; (413): 269–280. DOI: 10.1097/01.blo.0000073344.50837.cd
d’Agostino MC, Craig K, Tibalt E, Respizzi S. Shock wave as biological therapeutic tool: from mechanical stimulation to recovery and healing, through mechanotransduction. Int J Surg. 2015; 24(Pt B):147–153. DOI: 10.1016/j.ijsu.2015.11.030
Dietz-Laursonn K, Beckmann R, Ginter S, Radermacher K, de la Fuente M. In vitro cell treatment with focused shockwaves—influence of the experimental setup on the sound field and biological reaction. J Ther Ultrasound. 2016; 4: 10. DOI: 10.1186/s40349-016-0053-z
Tam KF, Cheung WH, Lee KM, Qin L, Leung KS. Delayed stimulatory effect of low-intensity shockwaves on human periosteal cells. Clin Orthop Relat R. 2005; 438: 260–265. DOI: 10.1097/00003086-200509000-00042
Augat P, Claes L, Suger G. In vivo effect of shock- waves on the healing of fractured bone. Clin Biomech (Bristol, Avon). 1995; 10(7): 374–378. DOI: 10.1016/0268-0033(95)00009-a
Delius M, Draenert K, Al Diek Y, Draenert Y. Biological effects of shock waves: in vivo effect of high energy impulses on rabbit bone. Ultrasound Med Biol. 1995; 21(9):1219–1225. DOI: 10.1016/0301-5629(95)00030-5
Väterlein N, Lüssenhop S, Hahn M, Delling G, Meiss AL. The effect of extracorporeal shock waves on joint cartilage: An in vivo study in rabbits. Arch Orthop Trauma Surg. 2000; 120(7-8): 403–406. DOI: 10.1007/pl00013770
Rubin C, Turner AS, Bain S, Mallinckrodt C, McLeod K. Anabolism. Low mechanical signals strengthen long bones. Nature. 2001; 412(6847):603–604. DOI: 10.1038/35088122
Tanaka SM, Alam IM, Turner CH. Stochastic resonance in osteogenic response to mechanical loading. FASEB J. 2002; 17(2):313–314. DOI: 10.1096/fj.02-0561fje
Tanaka SM, Li J, Duncan RL, Yokota H, Burr DB, Turner CH. Effects of broad frequency vibration on cultured osteoblasts. J Biomech. 2003; 36(1):73–80. DOI: 10.1016/s0021-9290(02)00245-2
Kusnierczak D, Brocai DR, Vettel U, Loew M. Einfluss der extrakorporalen Stosswellenapplikation (ESWA) auf das biologische Verhalten von Knochenzellen in vitro [Effect of extracorporeal shockwave administration on biological behavior of bone cells in vitro]. Z Orthop Grenzgeb. 2000; 138(1):29–33. DOI: 10.1055/s-2000-10109