Influence of silver Nitrate Concentration on the Synthesis and Antibacterial Activity of Silver Nanoparticles. Silver nitrate: nanoparticles and bacterial inhibition
Main Article Content
Abstract
The concentration of silver ions can directly affect the size, concentration, and shape of nanoparticles, making it an important parameter during their synthesis, particularly in the nucleation and stabilization stages, as it influences their properties, such as antibacterial activity. In this study, the effect of five silver nitrate (AgNO3) concentrations on the synthesis of silver nanoparticles was compared, using the extract of red pomegranate arils as both reducing and stabilizing agent. The nanoparticles were characterized by UV-Vis spectroscopy and an inhibition assay against two phytopathogenic bacteria to evaluate their antibacterial activity. The results showed that the green-synthesized silver nanoparticles exhibited a broad absorption peak ranging from 355 to 430 nm, indicating the presence of various particle sizes. The synthesized silver nanoparticles were able to inhibit the growth of both phytopathogenic bacterial strains. The nanoparticles synthesized with 1.25 mM AgNO3 showed the highest inhibition against both phytopathogenic bacteria.
Article Details
Citas en Dimensions Service
References
Agnihotri, S., Mukherji, S., y Mukherji, S. (2014). Size-controlled silver nanoparticles synthesized over the range 5-100 nm using the same protocol and their antibacterial efficacy. RSC Advances, 4(8), 3974-3983. https://doi.org/10.1039/C3RA44507K
Aguirre-Labastida, A. A., …y Aguilar-Ayala, I. (2020). Nanopartículas de plata de Punica granatum cultivada en San Lucas, Atotonilco el Grande, Hidalgo. Revista Tendencias en Docencia e Investigación en Quimica, 6(6), 449-454.
Amendola, V., Bakr, O. M. y Stellacci, F. (2010). A study of the surface plasmon resonance of silver nanoparticles by the discrete dipole approximation method: effect of shape, size, structure and assembly. Plasmonics, 5, 85-97. https://doi.org/10.1007/s11468-009-9120-4
Avila-Quezada, G. D., Golinska P., y Rai, M. (2022). Engineered nanomaterials in plant diseases: can we cambat phytopathogens? Applied Microbiology and Biotechnology, 106, 117-129. https://doi.org/10.1007/s00253-021-11725-w
Baptista, P. V., …y Fernandes, A. R. (2018). Nano-strategies to fight multidrug resistant bacteria- “A battle of the titans”. Frontiers in Microbiology, 9, 1441. https://doi.org/10.3389/fmicb.2018.01441
Benelli, G. (2016). Plant-mediated biosynthesis of nanoparticles as an emerging tool against masquitoes of medical and veterinary importance: a review. Parasitology Research, 115, 23-34. https://doi.org/10.1007/s00436-015-4800-9
Bruna, T., …y Caro, N. (2021). Silver nanoparticles and their antibacterial applications. International Journal of Molecular Sciences, 22(13), 7202. https://doi.org/10.3390/ijms22137202
Corona, U. C. (2005). Efectos del confinamiento cuántico en las propiedades electrónicas de nanoalambres de germanio [Tesis Doctoral, Instituto Politécnico Nacional]. https://tesis.ipn.mx/bitstream/handle/123456789/2635/Corona%20de%20la%20Luz%2C%20Ulises_Tesis.pdf?sequence=3&isAllowed=y
Cortés-Camargo, S., Jiménez-Rosales, A. y Acuña-Ávila, P. E. (2022). Green synthesis of AgNPs using Ustilago maydis as reducing and stabilizing agent. Journal of Nanotechnology, 2022, 494882. https://doi.org/10.1155/2022/2494882
Das, S., Bandyopadhyay, K., y Ghosh, M., M. (2021). Effect of stabilizer concentration on the size of silver nanoparticles synthesized through chemical route. Inorganic Chemistry Comunications, 123, 108319. https://doi.org/10.1016/j.inoche.2020.108319
Díaz Acosta, E. M. (2020). Nanopartículas de plata: síntesis y funcionalización. Una breve revisión. Mundo Nano. Revista Interdiciplinaria en Nanociencias y Nanotecnología, 12(22), 89-99. https://doi.org/10.22201/ceiich.24485691e.2019.22.60758
Facibeni, A. (2023). Silver nanoparticles. Synthesis, properties and applications. Jenny Stanford Publishing Pte. Ltd.
https://ebin.pub/silver-nanoparticles-synthesis-properties-and-applications-9789814968218.html
Farouk, S. M., … y Galal, A. (2023). Biosynthesis and characterization of silver nanoparticles from Punica granatum (Pomegranate) peel waste and its application to inhibit foodborne pathogens. Scientific Reports, 13, 19469. https://doi.org/10.1038/s41598-023-46355-x
Farshad, M. y Rasaiah, J. (2023). Kinetics of nanoparticle nucleation, growth, coalescence and aggregation: a theoretical study of (Ag) n nanoparticle formation based on population balance modulated by ligand binding. Chemical Physics, 573, 112002. https://doi.org/10.1016/j.chemphys.2023.112002
Hernández-Díaz, M. N., …y López-Valdez, F. (2024). El rol de las plantas silvestres o cultivables de México en la síntesis de nanopartículas. Mundo Nano Revista Interdisciplinaria en Nanociencias y Nanotecnología, 17(32), 1e-17e. https://doi.org/10.22201/ceiich.24485691e.2024.32.69743
Htwe, Y. Z. N., …y Mariatti, M. (2019). Effect of silver nitrate concentration on the production of silver nanoparticles by green method. Materialstoday: Proceedings, 17, 568-573. https://doi.org/10.1016/j.matpr.2019.06.336
Ibraheim, M. H., Ibrahiem, A., y Dalloul, T. R. (2016). Biosyntheesis of silver nanoparticles using pomegranate juice extract and its antibacterial activity. International Journal of Applied Sciences and Biotechnology, 4(3), 254-258. https://doi.org/10.3126/ijasbt.v4i3.15417
INSST (Instituto Nacional de Seguridad y Salud en el Trabajo). (2022). Nanomateriales: Medidas preventivas en laboratorios de investigación. NTP 1172: Nanomateriales: Medidas preventivas - Año 2022. https://www.insst.es/documentacion/colecciones-tecnicas/ntp-notas-tecnicas-de-prevencion/35-serie-ntp-numeros-1169-a-1175-ano-2022/ntp-1172-nanomateriales-medidas-preventivas
Joshi, S. J., …y Al-Azkawi, A. (2018). Green synthesis of silver nanoparticles using pomegranate peel extracts and its application in photocatalytic degradation of methylene blue. Jundishapur Journal of Natural Phamaceutical Products, 13(3), e67846. https://doi.org/10.5812/jjnpp.67846
Lara Suarez, A. A., …y Molina González, M. G. (2023). Análisis fitoquímico de Crateagus spp. y Punica granatum para su uso potencial en la síntesis de nanopartículas metálicas. Revista Tendencias en Docencia e investigación en Química, 9(9), 409-415.
López, A. M. (2021). Síntesis verde de nanopartículas de ora y plata. [Tesis de Licenciatura, Universidad de Sonora]. http://www.repositorioinstitucional.uson.mx/bitstream/20.500.12984/6873/1/lopezmillanalejandrad.pdf
Martínez, F. M., Zuñiga, E. G. y Sánchez-Lafarga, A. K. (2013). Método de síntesis de nanopartículas de plata adaptable a laboratorios de docencia relacionado con la nanotecnología. Mundo Nano. Revista Interdiciplinaria en Nanociencias y Nanotecnología, 6(10), 101-108. https://doi.org/10.22201/ceiich.24485691e.2013.10.50967
Masum, M. M. I., …y Li, B. (2019). Biogenic synthesis of silver nanoparticles using Phyllanthus emblica fruit extract and its inhibitory action against the pathogen Acidovorax oryzae strain RS-2 of rice bacterial brown stripe. Frontiers in Microbiology, 10, 820. https://doi.org/10.3389/fmicb.2019.00820
Mansfield, J., …y Foster, G. D. (2012). Top 10 plant pathogenic bacteria in molecular plant pathology. Molecular Plant Pathology, 13(6), 614-629. https://doi.org/10.1111/j.1364-3703.2012.00804.x
Melkamu, W. W. y Bitew, L. T. (2021). Green synthesis of silver nanoparticles using Hagenia abyssinica (Bruce) J.F. Gmel plant extract and their antibacterial and anti-oxidant activities. Heliyon, 7(11), e08459. https://doi.org/10.1016/j.heliyon.2021.e08459
Menichetti, A., ...y Montalti, M. (2023). Effect of size, shape and surface functionalization on the antibacterial activity of silver nanoparticles. Journal of Functional Biomaterials, 14(5), 244. https://doi.org/10.3390/jfb14050244
Nicolopoulou-Stamati, P., …y Hens, L. (2016). Chemical pesticides and human health: The urgent need for a new concept in agriculture. Frontiers in Public Health, 4, 148-156. https://doi.org/10.3389/fpubh.2016.00148
Pardo, L., Arias, J. y Molleda, P. (2022). Elaboración de nanopartículas de plata sintetizadas a partir de extracto de hojas de romero (Rosmarinus officinalis L) y su uso como conservante. La Granja. Revista de Ciencias de la Vida, 35(1), 45-58. https://doi.org/10.17163/lgr.n35.2022.04
Parit, S. B., ...y Chougale, A. D. (2020). Bioinspired synthesis of multifunctional silver nanoparticles for enhanced antimicrobial and catalytic applications with tailor SPR properties. Materialstoday Chemistry, 17, 100285. https://doi.org/10.1016/j.mtchem.2020.100285
Ritthichai, T., y Pimpan, V. (2019). Ammonia sensing of silver nanoparticles synthesized using tannic acid combined with UV radiation: Effect of UV exposure time. Jounal of King Saud University -Science, 31(2), 277-284. https://doi.org/10.1016/j.jksus.2018.08.008
Rojas Avelizapa, N. G., …y Rojas Avelizapa, L. I. (2020). Actividad antimicrobiana de nanopartículas de plata contra bacterias fitopatógenas. Revista Biológica Agropecuaria Tuxpan, 8(2), 1-7. https://doi.org/10.47808/revistabioagro.v8i2.173
Shanmugavadivu, M., Kuppusamy, S. y Ranjithkumar, R. (2014). Synthesis of pomegranate peel extract mediated silver nanoparticles and its antibacterial activity. American Journal of Advanced Drug Delivery, 2(2): 174-182.
Sobczak-Kupiec, A., …y Zimowska, M. (2011). Influence of silver nitrate concentration on the properties of silver nanoparticles. Micro & Nano Letters, 6(8), 656. https://doi.org/10.1049/mnl.2011.0152
Tuco Casquino, G. G. (2023). Uso de los extractos vegetales como agentes estabilizantes para la síntesis de nanopartículas de plata con actividad antimicrobiana [Tesis de Licenciatura, Universidad Católica de Santa María]. https://repositorio.ucsm.edu.pe/items/6499f0ef-4a28-40e5-9536-e43fe30a2a55
Vanlalveni, C., …y Lalthazuala Rokhum, S. (2021). Green synthesis of silver nanoparticles using plant extract and their antimicrobial activities. a review of recent literature. RSC Advances, 11(5), 2804-2837. https://doi.org/10.1039/D0RA09941D
Wolny-Kolandka, K., …y Wzorek, Z. (2022). Bio-based synthesis of silver nanoparticles from waste agricultural biomass and its antimicrobial activity. Processes, 10(2), 389. https://doi.org/10.3390/pr10020389
Zwijnenburg, M. A., (2021). The effect of particle size on the optical and electronic properties of magnesium oxide nanoparticles. Physical Chemistry Chemical Physics, 23(38),21579-21591. https://doi.org/10.1039/D1CP02683F

This work is licensed under a Creative Commons Attribution 4.0 International License.