The probiotic role of Lactobacillus acidophilus and its application in the food industry: a scoopy review and scientometric analysis Lactobacillus acidophilus in the food industry

Main Article Content

Susana Lara González
https://orcid.org/0000-0002-3458-9023
Verónica Rodríguez Soria
https://orcid.org/0000-0002-4956-2480
María José Alvarado López
https://orcid.org/0000-0001-9821-4434
Luis Daniel Ortega Martínez
https://orcid.org/0000-0003-4672-8809
Margarita Cervantes Rodríguez
https://orcid.org/0000-0002-2522-783X

Abstract

Currently, many diseases are attributable to intestinal microbiota dysfunction. Therefore, it is desirable to strengthen the consumption of functional foods that benefit intestinal health. This scoping review and scientometric analysis aimed to synthesize the current literature on the metabolism of Lactobacillus acidophilus (L. acidophilus) and its role as a probiotic in the food industry. A search was conducted on the metabolic pathways reviewed: glycolysis, lactic acid fermentation, fatty acid and phospholipid biosynthesis, amino acid biosynthesis, amino acid catabolism, the purine and pyrimidine pathway, and secondary metabolism (bacteriocine, dextran, acetic acid, B vitamins, and aldehyde). The foods offered by the industry include yogurt, cheese, orange juice, dairy snacks, coffee pulp, cereal bars, and rice bran. The benefits that microorganisms bring to food include improved organoleptic characteristics, shelf life, and functional and nutritional value. They also allow for the creation of a healthy microbial ecosystem that enhances the growth of beneficial bacteria, contributing to the consumer's intestinal well-being. Therefore, they represent a fundamental element at the intersection of science, health, and food technology.

Article Details

How to Cite
Lara González, S., Rodríguez Soria, V. ., Alvarado López, M. J. ., Ortega Martínez, L. D. ., & Cervantes Rodríguez, M. . (2025). The probiotic role of Lactobacillus acidophilus and its application in the food industry: a scoopy review and scientometric analysis: Lactobacillus acidophilus in the food industry. BIOCYT Biología Ciencia Y Tecnología, 18, 1358–1375. https://doi.org/10.22201/fesi.20072082e.2025.18.91532

Citas en Dimensions Service

References

Abdelhamid, S. M., …y Dairouty, R. K. (2021). Acidophilus labneh milk flavored with Thymus vulgaris and Nigella sativa: a new functional dairy product. International Journal of Dairy Science, 16(2), 48-57. https://doi.org/10.3923/ijds.2021.48.57

Aimutis, W. R. (2014). Microflora of the intestine. Biology of Lactobacillus acidophilus. En B. A. Carl y M. L. Tortorello (Eds). Encyclopedia of Food Microbiology (pp 646-651). Academic Press.

Altermann, E., …y Klaenhamme, T. R. (2005). Complete genome sequence of the probiotic lactic acid bacterium Lactobacillus acidophilus NCFM. Proceedings of the National Academy of Sciences, 102(11), 3906-3912. https://doi.org/10.1073/pnas.0409188102

Alves-Santos, A. M., …y Naves, M. M. V. (2023). Chemical composition and prebiotic activity of baru (Dipteryx alata Vog.) pulp on probiotic strains and human colonic microbiota. Food Research International, 164, 112366. https://doi.org/10.1016/j.foodres.2022.112366

Anjum, N., …y Momin, A. (2014). Lactobacillus acidophilus: characterization of the species and application in food production. Critical Reviews in Food Science and Nutrition, 54(9), 1241-1251. https://doi.org/10.1080/10408398.2011.621169

Aximujiang, K., …y Yunusi, K. (2022). Lactobacillus acidophilus and HKL suspension alleviates ulcerative colitis in rats by regulating gut microbiota, suppressing TLR9, and promoting metabolism. Frontiers in Pharmacology, 13, 859628. https://doi.10.3389/fphar.2022.859628

Barreto, C. M. P., …y Torres, A. S. A. (2024). Probiotic potential and application of indigenous non-starter lactic acid bacteria in ripened short-aged cheese. Current Microbiology, 81, 202. https://doi.org/10.1007/s00284-024-03729-2

Campedelli, I., …y O'Toole, P. W. (2018). Genus-Wide assessment of antibiotic resistance in Lactobacillus spp. Applied and Environmental Microbiology, 85(1), e01738-18. https://doi.org/10.1128/AEM.01738-18

Carneiro, M. S., …y Walter, E. H. M. (2022). Processing of soy beverages obtained from the grain, flour and powder extract and fermented by probiotics, Food Science and Technology, 42, e79322. https://doi.10.1590/fst.79322

Chandel, N. S. (2021). Glycolysis. Cold Spring Harbor Perspectives in Biology, 13(5), a040535. https://doi.org/10.1101/CSHPERSPECT.A040535

Chamberlain, M. C., …y Barrangou, R. (2022). Metabolomic analysis of Lactobacillus acidophilus, L. gasseri, L. crispatus, and Lacticaseibacillus rhamnosus strains in the presence of pomegranate extract. Frontiers in Microbiology, 13, 863228. https://doi.org/10.3389/fmicb.2022.863228

Cotter, P. D., Ross, R. P. y Hill, C. (2013). Bacteriocins — a viable alternative to antibiotics? Nature Reviews Microbiology, 11, 95-105. https://doi.org/10.1038/nrmicro2937

da Conceição, A. T. M., …y Fagner, W. D. C. (2021). In vitro resistance of lactic acid bacteria carried in kefir appetizer enriched with agroindustrial by-products. LWT, 139, 110519. https://doi.10.1016/j.lwt.2020.110519

Dailin, D. J., …y El Enshasy, H. A, H. (2023). A review on exopolysaccharide production by Lactobacillus acidophilus and their techno-functional applications in food and pharmaceutical industry. Bioscience Research, 20(1), 208-217.

Davarzani, S., …y Soltani, M. (2024). Investigating the antibacterial, antioxidant, and cholesterol-lowering properties of yogurt fortified with postbiotic of Lactobacillus acidophilus and Lactiplantibacillus plantarum in the wistar rat model. Journal of Food Protection, 87(12), 100408. https://doi.org/10.1016/j.jfp.2024.100408

de Abreu R. P. J., …y Cintra, E. D. (2022). Combined effects of yacon flour and probiotic yogurt on the metabolic parameters and inflammatory and insulin signaling proteins in high-fat-diet-induced obese mice. Journal of the Science of Food and Agriculture, 102(15), 7293-7300. https://doi.10.1002/jsfa.12095

de Andrade, E. W. V., …y Pedrini, M. R. S. (2022). Techno-functionality of fisetin-enriched yoghurt fermented with Lactobacillus acidophilus bio-capsules produced via osmoporation. Systems Microbiology and Biomanufacturing, 2, 743-749. https://doi.org/10.1007/s43393-022-00100-z

Dempsey, E. y Corr, S. C. (2022). Lactobacillus spp. for gastrointestinal health: current and future perspectives. Frontiers in Immunology, 13, 840245. https://doi.10.3389/fimmu.2022.840245

Derviş, H. (2020). Bibliometric analysis using Bibliometrix an R Package. Journal of Scientometric Research, 8(3), 156-160. https://doi.org/10.5530/jscires.8.3.32

Dysin, A. P., …y Kritchenkov, A. S. (2023). Biologically active supplements affecting producer microorganisms in food biotechnology: a review. Molecules, 28(3), 1413. https://doi:10.3390/molecules28031413

Elgarhy, M. R., …y Saber, W. I. A. (2023). Biochemical, microstructural, and probiotic bacterial patterns of innovative fresh cheese fortified with Helianthus tuberosus tubers. Processes, 11(10), 2854. https://doi.org/10.3390/pr11102854

Ferronatto, A. N., …y Garavaglia, J. (2021). Development of a freeze-dried symbiotic obtained from rice bran. Biotechnology Reports, 30, e00636. https://doi.org/10.1016/j.btre.2021.e00636

Gänzle, M. G. y Follador, R. (2012). Metabolism of oligosaccharides and starch in lactobacilli: a review. Frontiers in Microbiology, 3, 340. https://doi.10.3389/fmicb.2012.00340

Gänzle, M. G. y Ripari, V. (2016). Composition and function of sourdough microbiota: From ecological theory to bread quality. International Journal of Food Microbiology, 239, 19-25. https://doi.org/10.1016/j.ijfoodmicro.2016.05.004

Gao, H., …y Li, P. (2022). The Functional roles of Lactobacillus acidophilus in different physiological and pathological processes. Journal of Microbiology and Biotechnology, 32(10),1226-1233. https://doi.org/10.4014/jmb.2205.05041

Geng, J., …y Feng, X. (2022). The links between gut microbiota and obesity and obesity related diseases. Biomedicine and Pharmacotherapy, 147, 112678. https://doi.org/10.1016/j.biopha.2022.112678

Gervasi, C., …y Gervasi, T. (2022). From by-product to functional food: the survival of L. casei shirota, L. casei immunitas and L. acidophilus johnsonii, during spray drying in orange juice using a maltodextrin/pectin mixture as carrier. Natural Products Research, 36(24), 6393-6400. https://doi.org/10.1080/14786419.2022.2032049

Goh, Y. J., Barrangou, R. y Klaenhammer, T. R. (2021). In vivo transcriptome of Lactobacillus acidophilus and colonization impact on murine host intestinal gene expression. mBio, 12(1), e03399-20. https://doi.org/10.1128/mbio.03399-20

Goli Mehdi Abadi, M. E., …y Oshaghi, M. (2023). Isolation and characterization of the lactobacillus strain from honey and its probiotic properties. Iranian Journal of Microbiology, 15(3), 439-447. https://doi.10.18502/ijm.v15i3.12905

Gu, Q., …y Zou, C. (2025). Effects and function of citric acid on fermentation quality and microbial community in sugarcane tops silage with high and low water-soluble carbohydrate content. BMC Plant Biology, 25(1), 99. https://doi.org/10.1186/s12870-025-06063-2

Güney, D. y Güngörmüşler, M. (2021). Development and comparative evaluation of a novel fermented juice mixture with probiotic strains of lactic acid bacteria and bifidobacteria. Probiotics and Antimicrobial Proteins, 13(2), 495-505. https://doi.10.1007/s12602-020-09710-2

Holgado, F., …y Rupérez, P. (2021). In vitro fermentability of globe artichoke by-product by Lactobacillus acidophilus and Bifidobacterium bifidum. Bioactive Carbohydrates and Dietary Fibre, 26, 100286. https://doi.org/10.1016/j.bcdf.2021.100286

Hossain, M. N., …y Ajlouni, S. (2021). Impact of encapsulating probiotics with cocoa powder on the viability of probiotics during chocolate processing, storage, and in vitro gastrointestinal digestion. Journal of Food Science, 86(5), 1629-1641. https://doi.org/10.1111/1750-3841.15695

Hurtado-Romero, A., …y García-Cayuela, T. (2025). Frozen fermented dairy snacks with probiotics and blueberry bagasse: stability, bioactivity, and digestive viability. Microorganisms, 13(1), 86. https://doi.org/10.3390/microorganisms13010086

Ibrahem, A. A., Al-Shawi, S. G. y Al-Temimi, W. K. A. (2024). The antagonistic activity of the synbiotic containing Lactobacillus acidophilus and pineapple residue FOS against pathogenic bacteria. Brazilian Journal of Biology, 7(84), e258277. https://doi.org/10.1590/1519-6984.258277

Khochapong, W., …y Punbusayakul, N. (2021). Effect of in vitro digestion on bioactive compounds, antioxidant and antimicrobial activities of coffee (Coffea arabica L.) pulp aqueous extract. Food Chemistry, 348, 129094. https://doi.10.1016/j.foodchem.2021.129094

Krausova, G., …y Kadlec, R. (2021). Identification of synbiotics conducive to probiotics adherence to intestinal mucosa using an in vitro Caco-2 and HT29-MTX cell model. Processes, 9(4), 569. https://doi.org/10.3390/pr9040569

Lasta, E. L., …y Alves, M. A. C. (2021). Encapsulation and dispersion of Lactobacillus acidophilus in a chocolate coating as a strategy for maintaining cell viability in cereal bars. Scientific Reports, 11, 20550. https://doi.org/10.1038/s41598-021-00077-0

Lebeer, S., Vanderleyden, J. y De Keersmaecker, S. C. J. (2008). Genes and molecules of lactobacilli supporting probiotic action. Microbiology and Molecular Biology Reviews, 72(4), 728-764. https://doi.org/10.1128/mmbr.00017-08

LeBlanc, J. G., …y Sesma, F. (2011). B‐Group vitamin production by lactic acid bacteria – current knowledge and potential applications. Journal of Applied Microbiology, 111(6), 1297-1309. https://doi.org/10.1111/j.1365-2672.2011.05157.x

Liu, Y., …y Łopusiewicz, Ł. (2024). Health-promoting effects of Lactobacillus acidophilus and its technological applications in fermented food products and beverages. Fermentation, 10(8), 380. https://doi.org/10.3390/fermentation10080380

Li, Y., Liu, H. (2024). Effects of fermentation with different probiotics on the quality, isoflavone content, and flavor of okara beverages. Food Science and Nutrition, 12(4), 2619-2633. https://doi.org/10.1002/fsn3.3944

Liong, M. T. y Shah, N. P. (2005). Optimization of cholesterol removal by probiotics in the presence of prebiotics by using a response surface method. Applied and Environmental Microbiology, 71(4), 1745-1753. https://doi.10.1128/AEM.71.4.1745-1753.2005

Lu, Y., …y Dai, Y. (2022). Characterization, high-density fermentation, and the production of a directed vat set starter of Lactobacilli used in the food industry: a review. Foods, 11(19), 3063. https://doi.org/10.3390/foods11193063

Madigan, M. T., …y Stahl, D. A. (2018). Brock: Biología de los microorganismos. Pearson.

Martínez, B., …y Chapot-Chartier, M. P. (2020). Cell wall homeostasis in lactic acid bacteria: threats and defences. FEMS Microbiology Reviews, 44(5), 538-564. https://doi:10.1093/femsre/fuaa021

Mashayekh, S., …y Eshaghi, M. R. (2025). Evaluation of physicochemical, textural, and microbial characteristics of probiotic soy cheese during storage: Generation and isolation of bioactive peptides. Food Science and Technology International, 31(6), 516-528. https://doi.org/10.1177/10820132231226257

Mendonça, A. A., …y De Souza, R. B. (2023). Journey of the probiotic bacteria: survival of the fittest. Microorganisms, 11(1), 95. https://doi.org/10.3390/microorganisms11010095

Naissinger da Silva, M., …y Pereira Dos Santos R. (2021). In vitro test to evaluate survival in the gastrointestinal tract of commercial probiotics. Current Research in Food Science, 4, 320-325. https://doi.10.1016/j.crfs.2021.04.006

Niamah, A. K., …y Singh, S. (2023). Investigating the effect of addition of probiotic microorganisms (bacteria or yeast) to yoghurt on the viability and volatile aromatic profiles. Food Measure, 17, 5463-5473. https://doi.org/10.1007/s11694-023-02056-7

Noori, S. M. A., …y Siahpoosh, A. (2022). Antimicrobial and antioxidant properties of natural postbiotics derived from five lactic acid bacteria. Jundishapur Journal of Natural Pharmaceutical Products, 18(1), e130785. https://doi.org/10.5812/jjnpp-130785

Parra, R. A. H. (2010). Review lactic acid bacteria: funcional role in the foods. Biotecnología en el Sector Agropecuario y Agroindustrial, 8(1), 93-105.

Rana, A., …y Dhewa, T. (2024). Exploring prebiotic properties and its probiotic potential of new formulations of soy milk-derived beverages. Frontiers in Microbiology, 15, 1404907. https://doi.10.3389/fmicb.2024.1404907

Rau, S., …y Limketkai, B. (2024). Prebiotics and probiotics for gastrointestinal disorders. Nutrients, 16(6), 778. https://doi.org/10.3390/nu16060778

Remes-Troche, J. M., …y Solana, R. O. (2020). Lactobacillus acidophilus LB: a useful pharmabiotic for the treatment of digestive disorders. Therapeutic Advances in Gastroenterology, 13, 1756284820971201. https://doi.org/10.1177/1756284820971201

Salas-Jara, M. J., …y García A. (2016). Biofilm forming Lactobacillus: new challenges for the development of probiotics. Microorganisms, 4(3), 35. https://doi.org/10.3390/microorganisms4030035

Salgaco, M. K., …y Sivieri, K. (2023). Impact of Lactobacillus acidophilus — La5 on composition and metabolism of the intestinal microbiota of type 2 diabetics (T2D) and healthy individuals using a microbiome model. Fermentation, 9(8), 740. https://doi.org/10.3390/fermentation9080740

Sarita, B., …y Kovaleva, E. G. (2025). A comprehensive review of probiotics and human health-current prospective and applications. Frontiers in Microbiology, 15, 1487641. https://doi.org/10.3389/fmicb.2024.1487641

Sarkar, A., …y Alam, M. (2025). Fermentation of Sapodilla juice with Lactobacillus acidophilus: fermentation kinetics and evaluation of functional properties. Journal of Food Science, 90(3), e70135. https://doi.org/10.1111/1750-3841.70135

Shah, A. B., …y Al-Zharani, M. (2024). Probiotic significance of Lactobacillus strains: a comprehensive review on health impacts, research gaps, and future prospects. Gut Microbes, 16(1), 2431643. https://doi.org/10.1080/19490976.2024.2431643

Śliżewska, K. y Chlebicz-Wójcik, A. (2020). Growth kinetics of probiotic Lactobacillus strains in the alternative, cost-efficient semi-solid fermentation medium. Biology, 9(12), 423. https://doi.10.3390/biology9120423

Terpou, A., …y Kopsahelis, N. (2019). Probiotics in food systems: significance and emerging strategies towards improved viability and delivery of enhanced beneficial value. Nutrients, 11(7), 1591. https://doi.10.3390/nu11071591

Zhao, C. J., Schieber, A. y Gänzle, M. G., y (2016). Formation of taste-active amino acids, amino acid derivatives and peptides in food fermentations – A review. Food Research International, 89(1), 39-47. https://doi.org/10.1016/j.foodres.2016.08.042

Zhao, R., …y Liang, X. (2023). Apple polyphenol biotransformation using probiotics in vitro and dynamic simulated digestion by bionic rats. Journal of the Science of Food and Agriculture, 103(11), 5490-5499. https://doi.org/10.1002/jsfa.12625

Zheng, J., …y Gänzle, M. G. (2015). A genomic view of lactobacilli and pediococci demonstrates that phylogeny matches ecology and physiology. Applied and Environmental Microbiology, 81(20), 7233-7243. https://doi.org/10.1128/AEM.02116-15