Energy, environmental and financial evaluation of progressive cavity pumps with rotors produced from different materials

Main Article Content

Marcelo Angelo Taparello de Souza
Walter Andrey Fontana
Carlos Alberto Mendes Moraes

Abstract

In industrial applications, pumps traditionally operate for thousands of hours at high pressures, often under severe conditions imposed by abrasive fluids or undergoing chemical attack. However, in tinting dispensers, a progressive cavity pump (PCP) rarely reaches one hundred hours of use, and alternative materials could be explored for its components. An energetic, environmental, and financial assessment was conducted on four distinct materials intended for the rotor of a PCP: chrome-coated steel, PA6, PEEK, and 6082 aluminum alloy. Equipment was built to obtain the characteristic curves of each pump, electrical energy consumption, wear of rotors and stators, and energy efficiency. The rotor machining process was instrumented to measure electrical energy and inputs. The Cleaner Production method was applied, and, finally, the rotors underwent financial evaluation. There was no significant wear on the stator-rotor pairs, the minimum lifetime was not a challenge for the integrity of any of the components, and the polymers studied were not incompatible with the working fluid. Maximum and minimum energy efficiency of the pumps occurred with aluminum alloy and PA6 rotors, respectively, showing a difference of 22.5% in electrical energy consumption. However, the PA6 rotor presented the best energy and environmental efficiency in the manufacturing process, in addition to being the only one capable of dry machining. Financially, all proposed materials registered a significant improvement, particularly highlighting the aluminum alloy and PA6 rotors, which exceeded a 90% cost reduction.

Article Details

How to Cite
[1]
Taparello de Souza, M.A., Fontana, W.A. and Mendes Moraes, C.A. 2024. Energy, environmental and financial evaluation of progressive cavity pumps with rotors produced from different materials. Revista AIDIS de ingeniería y ciencias ambientales: Investigación, desarrollo y práctica. 17, 3 (Dec. 2024), 649–673. DOI:https://doi.org/10.22201/iingen.0718378xe.2024.17.3.87160.

Citas en Dimensions Service

References

Auria, R., Frere, G., Morales, M., Acuña, M.E. and Revah, S. (2000) Influence of mixing and water addition on the removal rate of toluene vapors in a biofilter, Biotechnology and Bioengineering, 68(4), 448-455.

Aage, N., Donaldson, J., Feng. Y., van Gennip, Y., Grann, H., Gravesen, J., Hlod, H., Jensen, T., Larsen, A., Malakpoor, K., Markvorsen, S., Moreno, D., in’t panhuis, J., in’t panhuis, P., Røgen, P. and Vondenhoff, E. (2006) Mathematical problems for Moineau pumps, Technical report, Grundfos.

Análise Setorial da Indústria de Tintas (1998) Panorama Setorial da Gazeta Mercantil, Gazeta Mercantil, São Paulo, jun. 1998.

Chaparro Fonseca, E. (2008) Efecto del corte de agua y la viscosidad del fluido de producción en la eficiencia volumétrica de las bombas de cavidades progresivas, Bachelor in Petroleum Engineering, Escuela de Ingeniería de Petróleos, Universidad Industrial de Santander, Bucaramanga, 165 pp.

Chen, J., Liu, H., Wang, F., Shi, G., Cao, G., Wu, H. (2013) Numerical prediction on volumetric efficiency of progressive cavity pump with fluid–solid interaction model, Journal of Petroleum Science and Engineering, 109, 12-17. https://doi.org/10.1016/j.petrol.2013.08.019

Ferreira, D. (2015) Máquinas tintométricas: benefícios para o setor e para a sustentabilidade. Accessed on January 29, 2018. Available at: http://www.abrafati.com.br/noticias-e-artigos/artigos/maquinas-tintometricas-beneficios-para-o-setor-e-para-a-sustentabilidade

GELTINT (2018) Institutional website. Accessed on April 2, 2018. Available at: http://www.geltint.com

Gravesen, J. (2008) The geometry of the Moineau pump, Computer Aided Geometric Design, 25(9), 792-800. https://doi.org/10.1016/j.cagd.2008.06.012

Henn, E. (2019) Máquinas de Fluido, 4. ed. Editora UFSM, Santa Maria, 495 pp.

Linhares, H. 16 melhores sistemas tintométricos do Brasil: Máquinas tintométricas mais vendidas no Brasil. Accessed on January 29, 2018. Available at: http://sohelices.com.br/16-melhores-sistemas-tintometricos-do-brasil

Medeiros, D. D., Calábria, F. A., Silva, G. C. S. and Silva Filho, J. C. G. (2007). Aplicação da Produção mais Limpa em uma empresa como ferramenta de melhoria contínua. Production, 17(1), 109-128. Available at:

https://www.redalyc.org/articulo.oa?id=396742029008

Mohan, L.V., Shunmugam, M.S. (2007) Simulation of whirling process and tool profiling for machining of worms, Journal of Materials Processing Technology, 185(1–3), 191-197.

https://doi.org/10.1016/j.jmatprotec.2006.03.115

Monfardini, L. (2013) Sistemas Tintométricos e Colorantes: Automatização consolidada. Revista Paint & Pintura, 179, 70-71. Available at: https://www.paintshow.com.br/edicao/paintpintura/179/files/assets/basic-html/page70.html

Nguyen, T.C., Tu, H., Al-Safran, E.M., Saasen, A. (2016). Simulation of single-phase liquid flow in Progressing Cavity Pump. Journal of Petroleum Science and Engineering, 147, 617-623. https://doi.org/10.1016/J.PETROL.2016.09.037

Oliveira, J. F. G. and Alves, S. M. (2007) Adequação ambiental dos processos de usinagem utilizando Produção mais Limpa como estratégia de gestão ambiental, Production, 17(1), 129-138.

https://doi.org/10.1590/S0103-65132007000100009

Paladino, E. E., Lima, J. A., Almeida, R. F. C. and Assmann, B. W. (2008) Computational Modeling of the Three-Dimensional Flow in a Metallic Stator Progressing Cavity Pump, SPE Progressing Cavity Pumps Conference. https://doi.org/10.2118/114110-MS

Pessoa, P. A. S. (2009) Simulação computacional do escoamento em bombas de cavidades progressivas, Master's degree in mechanical engineering - Universidade Federal do Rio Grande do Norte, Natal, 86 pp.

Rigatti, A. M.Y. (2010) Avaliação da Força de Usinagem e Energia Específica de Corte no Fresamento com Alta Velocidade de Corte, Master's degree in mechanical engineering, Faculdade de Engenharia, UNESP–Campus de Ilha Solteira, Ilha Solteira, 87 pp.

Serizawa, M., Matsumura, T. (2016) Control of Helical Blade Machining in Whirling, Procedia Manufacturing, 5, 417-426. https://doi.org/10.1016/j.promfg.2016.08.035

Song, S., Zuo, D. (2014) Modelling and simulation of whirling process based on equivalent cutting volume, Simulation Modelling Practice and Theory, 42, 98-106. https://doi.org/10.1016/j.simpat.2013.12.011

Souza, A. J. (2011) Processos de Fabricação por Usinagem. [lecture notes for the course "Manufacturing Processes by Machining"]. Federal University of Rio Grande do Sul, Porto Alegre.

Whittaker, L. V. (2003) Evaluation and analysis of wear in progressive cavity pumps. PhD in Engineering, The University of Hull, Hull, 194 pp.

Zanger, F., Sellmeier, V., Klose, J., Bartkowiak, M., Schulze, V. (2017) Comparison of Modeling Methods to Determine Cutting Tool Profile for Conventional and Synchronized Whirling, Procedia CIRP, 58, 222-227. https://doi.org/10.1016/j.procir.2017.03.216

Zaparolli, D. (2009) Sistema tintométrico - preço e despreparo dos lojistas dificultam crescimento das vendas. Accessed on January 29, 2018. Available at: https://www.quimica.com.br/sistema-tintometrico-preco-e-despreparo-dos-lojistas-dificultam-crescimento-das-vendas