Phytoremediation and microremediation of soils contaminated by lead (Pb) and cadmium (Cd)

Main Article Content

Antônio Rony da Silva Pereira Rodrigues

Abstract

Heavy metals such as lead and cadmium can cause serious damage to human health, since, not being dissolved by the human body, sustainable ways to remove heavy metals from the soil are phytoremediation and microremediation. The present study aimed to evaluate in the literature the species involved in the sustainable removal of lead and cadmium from contaminated soils. We chose to carry out an integrative review of the literature, through an extensive search of studies in the Scopus and Web of Science databases. The results show that species such  as Chrysopogon zizaniodes and Paspalum fasciculatum  can be an alternative for the elimination of Cd and Pb, because they have resistance and act as bioaccumulators of these compounds, in addition to having a rapid growth. The Trichoderma asperellum fungus  was also viable, as it has a maximum removal efficiency rate of 76.17% and 68.4% for cadmium and lead, respectively. The use of phytoremediation and microremediation are essential to ensure the health of soils and the quality of cultivated food, as it is a low-cost and sustainable technology, it can be easily inserted by rural producers and researchers.

Article Details

How to Cite
[1]
Rodrigues, A.R. da S.P. 2024. Phytoremediation and microremediation of soils contaminated by lead (Pb) and cadmium (Cd). Revista AIDIS de ingeniería y ciencias ambientales: Investigación, desarrollo y práctica. 17, 2 (Aug. 2024), 425–437. DOI:https://doi.org/10.22201/iingen.0718378xe.2024.17.2.85712.

Citas en Dimensions Service

References

Alberto, Á.A., Sugey, L.M.R., Ana, R.L., Eduardo, M.L.H, Carlos, M.B., Emanuel, H.N. (2022) Analysis of Chrysopogon zizanioides used as floating treatment wetlands in the removal of heavy metals present in leachate. Remediation., 33(1), 77-86. https://doi.org/10.1002/rem.21739

Cobbina, S.J., Chen, Y., Zhou, Z., Wu, X., Zhao, T., Zhang, Z., Feng, W., Wang, W., Li, Q., Wu, X., Yang, L. (2015) Toxicity assessment due to sub-chronic exposure to individual and mixtures of four toxic heavy metals. J. Hazard. Mater., vol. 294 109-120. https://doi.org/10.1016/j.jhazmat.2015.03.057

De Oliveira, R.C., Marins, R.V. (2011) Dinâmica de metais-traço em solo e ambiente sedimentar estuarino como um fator determinante no aporte desses contaminantes para o ambiente aquático: revisão. Rev. Virt. de Quím, 3(2), 88-102. https://doi.org/10.5935/1984-6835.20110014

Debela, A.S., Dawit, M., Tekere, M., Itanna, F. (2022) Phytoremediation of soils contaminated by lead and cadmium in Ethiopia, using Endod (Phytolacca dodecandra L) Int. J. Phytoremediation., 24(13), 1339-1349. https://doi.org/10.1080/15226514.2021.2025336

Dias, M.S.D.A., Parente, J.R.F., Vasconcelos, M.IO., Dias, F.A.C. (2014) Intersetorialidade e Estratégia Saúde da Família: tudo ou quase nada a ver?. Cien Saude Colet., vol. 19(11), 4371-4382. https://doi.org/10.1590/1413-812320141911.11442014

Doghbage, A., Boukerker, H., Abdellatif Belhouadjeb, F., Nedjimi, B. (2023) Phytoremediation by using Atriplex halimus subsp. Schweinfurthii as a bio-absorbent of Cadmium in the soil. Environ. Health Eng. Manag., 10(1), 17-22. https://doi.org/10.34172/EHEM.2023.02

El-Mahrouk, E.M., Eisa, E.A.E., Ali, H.M., Hegazy, M.A.E., Abd El-Gayed, M.E.S. (2020) Populus nigra as a phytoremediator for Cd, Cu, and Pb in contaminated soil. BioRes., 15(1), 869-893. https://doi.org/10.15376/biores.15.1.869-893

Faghih, F., Emadi, M., Sadegh-Zadeh F., Bahmanyar, M.A. (2018) Long-term charcoal-induced changes to soil properties in temperate regions of northern Iran. J. For. Res., 30, 1063-1071. https://doi.org/10.1007/s11676-018-0641-6

Gravand, F., Rahnavard, A., Pour, G.M. (2021) Investigation of vetiver grass capability in phytoremediation of contaminated soils with heavy metals (Pb, Cd, Mn, and Ni) Soil Sediment Contam., 30(2), 163-186. https://doi.org/10.1080/15320383.2020.1819959

Hoseinzadeh, S., Shahabivand, S., Aliloo, A.A. (2017) Toxic metals accumulation in Trichoderma asperellum and T. harzianum. Microbiology, vol. 86(6), 728-736. https://doi.org/10.1134/S0026261717060066

Jan, S.U., Rehman, M., Gul, A., Fayyaz, M., Rehman, S.U., Jamil, M. (2022) Combined application of two Bacillus species enhance phytoremediation potential of Brassica napus in an industrial metal-contaminated soil. Int. J. Phytoremediation, 24(6), 652-665. https://doi.org/10.1080/15226514.2021.1962797

Jin, Z., Deng, S., Wen, Y., Jin, Y., Pan, L., Zhang, Y., Zhang, D. (2019) Application of Simplicillium chinense for Cd and Pb biosorption and enhancing heavy metal phytoremediation of soils.

Sci. Total Environ., 697, e134148. https://doi.org/10.1016/j.scitotenv.2019.134148

Kan, C.A., Meijer, G.A.L. (2007) The risk of contamination of food with toxic substances present in animal feed. Anim. Feed Sci. Technol., 133(1-2), 84-108. https://doi.org/10.1016/j.anifeedsci.2006.08.005

Mahmoud, E.K.,Ghoneim, A.M. (2016) Effect of polluted water on soil and plant contamination by heavy metals in El-Mahla El-Kobra, Egypt. Solid Earth, 7(2),703-711. https://doi.org/10.5194/se-7-703-2016

Mendes, K.D.S., Silveira, R.C.C.P., Galvão, C.M. (2008) Revisão integrativa: método de pesquisa para a incorporação de evidências na saúde e na enfermagem. Texto Cont. Enferm., 17(4), 758-64. https://doi.org/10.1590/S0104-07072008000400018

Moameri, M., Abbasi Khalaki, M. (2019) Capability of Secale montanum trusted for phytoremediation of lead and cadmium in soils amended with nano-silica and municipal solid waste compost. Environ. Sci. Pollut. Res., 26, 24315-24322. https://doi.org/10.1007/s11356-017-0544-7

Mohsenzadeh, F., Shahrokhi, F. (2014) Biological removing of Cadmium from contaminated media by fungal biomass of Trichoderma species. J. environ. health sci. eng, vol. 12(1-7). https://doi.org/10.1186/2052-336X-12-102

Nouri, J., Khorasani, N., Lorestani, B., Karami, M., Hassani, A.H., Yousefi, N. (2009) Accumulation of heavy metals in soil and uptake by plant species with phytoremediation potential. Environ. Earth Sci., 59, 315–323. https://doi.org/10.1007/s12665-009-0028-2

Orekanti, E.R., Muni, K.M., Devarajan, S.K. (2019) Pilot study on phytoremediation of contaminated soils with different plant species. J Hazard Toxic Radioact Waste., 23, nº. (4), e04019021. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000462

Ouzzani, M., Hammady, H., Fedorowicz, Z., Elmagarmid, A. (2016) Rayyan—a web and mobile app for systematic reviews. Syst. Rev., 5, 1-10. https://doi.org/10.1186/s13643-016-0384-4

Rai, P.K., Lee, S.S., Zhang, M., Tsang, Y.F., Kim, K.H. (2019) Heavy metals in food crops: Health risks, fate, mechanisms, and management. Environ. Int., 125, 365-385. https://doi.org/10.1016/j.envint.2019.01.067

Rajesh, P., Athiappan, M., Paul, R., Raj, K.D. (2014) Bioremediation of cadmium by Bacillus safensis (JX126862), a marine bacterium isolated from mangrove sediments. Int. j. curr. microbiol. appl. sci., 3(12), 326-335.

Rehman, M., Liu, L., Wang, Q., Saleem, M.H., Bashir, S., Ullah, S., Peng, D. (2019) Copper environmental toxicology, recent advances, and future outlook: A review. Environ. Sci. Pollut. Res., 26, 18003–18016. https://doi.org/10.1007/s11356-019-05073-6

Salas-Moreno, M., Marrugo-Negrete, J. (2020) Phytoremediation potential of Cd and Pb-contaminated soils by Paspalum fasciculatum Willd. Ex Flüggé. Int J Phytoremediation, 22(1), 87-97. https://doi.org/10.1080/15226514.2019.1644291

Saleem, M.H., Ali, S., Rehman, M., Hasanuzzaman, M., Rizwan, M., Irshad, Qari, S.H. (2020) Jute: A potential candidate for phytoremediation of metals-a review. Plants (Basel), 9(2), 258. https://doi.org/10.3390/plants9020258

Sharma, U., Sharma, J.G. (2022) Nanotechnology for the bioremediation of heavy metals and metalloids. J Appl Biol Biotechnol, 10(5), 34-43. https://doi.org/10.7324/JABB.2022.100504

Souza, M.T., Silva, M.D., Carvalho, R. (2010) Revisão integrativa: o que é e como fazer. Einstein, 8(1), 102-106. https://doi.org/10.1590/s1679-45082010rw1134

Su, Y., Sun, S., Liu, Q., Zhao, C., Li, L., Chen, S., Tang, F. (2022) Characterization of the simultaneous degradation of pyrene and removal of Cr (VI) by a bacteria consortium YH. Sci. Total Environ., 853. https://doi.org/10.1016/j.scitotenv.2022.158388

Tang, L., Hamid, Y., Zehra, A., Sahito, Z.A., He, Z., Hussain, B., Yang, X. (2019) Characterization of fava bean (Vicia faba L.) genotypes for phytoremediation of cadmium and lead co-contaminated soils coupled with agro-production. Ecotoxicol. Environ. Saf., 171, 190-198. https://doi.org/10.1016/j.ecoenv.2018.12.083

Wasino, R., Likitlersuang, S., Janjaroen, D. (2019) The performance of vetivers (Chrysopogon zizaniodes and Chrysopogon nemoralis) on heavy metals phytoremediation. Int J Phytoremediation, 21(7), 624-633. https://doi.org/10.1080/15226514.2018.1546275

Yin, K., Wang, Q., Lv, M., Chen, L. (2019) Microorganism remediation strategies towards heavy metals. Chem. Eng. J., 360, 1553-1563. https://doi.org/10.1016/j.cej.2018.10.226

Yousefi, Z., Babanejad, E., Mohammadpour, R., Esbokolaee, H.N. (2023) Evaluation of Cd phytoremediation by Portulaca oleracea irrigated by contaminated water. Environ. Health Eng. Manag., 10(1), 67-73. https://doi.org/10.34172/EHEM.2023.08

Zhang, X., Li, X., Yang, H., Cui, Z. (2018) Biochemical mechanism of phytoremediation process of lead and cadmium pollution with Mucor circinelloides and Trichoderma asperellum. Ecotoxicol. Environ. Saf., 157, 21-28. https://doi.org/10.1016/j.ecoenv.2018.03.047