Comparison of methodologies for fractioning the COD of municipal wastewater and its application in the ASM1 Model

Main Article Content

Miguel Ángel Espinosa Rodríguez
Raúl Delgado Delgado
Antonio Hidalgo Millán

Abstract

The ASM1 model is applied in wastewater treatment processes and is capable of predicting the removal of organic matter, nitrification and denitrification. For the ASM1 calibration, it is necessary to characterize the influent and effluent of the biological treatment system, and particularly, fractionate the COD into biodegradable, inert, particulate and soluble components. The objective of this work was to make a comparison of different calculation procedures to fractionate the COD (STOWA, ATV-A131 and Influent Advisor) using filters with pores of 0.45 μm. The results obtained with the 3 methods indicated a percentage of 58% of soluble COD and 42% of particulate COD, being then a greater contribution of soluble COD and, therefore, the characterized wastewater is of municipal or domestic origin. According to the methodologies and results of the COD fractions, the 3 methods can be used for their application in the ASM1 model.

Article Details

How to Cite
[1]
Espinosa Rodríguez, M. Ángel, Delgado Delgado, R. and Hidalgo Millán, A. 2024. Comparison of methodologies for fractioning the COD of municipal wastewater and its application in the ASM1 Model. Revista AIDIS de ingeniería y ciencias ambientales: Investigación, desarrollo y práctica. 17, 1 (Apr. 2024), 191–205. DOI:https://doi.org/10.22201/iingen.0718378xe.2024.17.1.84916.

References

APHA, American Public Health Association (2005) Standard methods for the examination of water and wastewater, APHA-AWWA-WPCF, Washington, D.C., 1364 PP.

ATV-DVWK (2000) Rules and Standards. Dimensioning of single-stage activated sludge plants, Publishing Company of ATV-DVWK, Water, Wastewater, Waste, Hennef, Germany, 57 pp.

Baquero, G., Lara, J. and Martelo, J. (2016) A simplified method for estimating chemical oxygen demand (COD) fractions, Water Practice and Technology, 11(4), 838-848. https://doi.org/10.2166/wpt.2016.089

Choi, Y., Baek, S., Kim, J., Choi, J., Jur, J., Lee, T., Park, C. and Lee, B. (2017) Characteristics and biodegradability of wastewater organic matter in municipal wastewater treatment plants collecting domestic wastewater and industrial discharge, Water. 9, 1-12. https://doi.org/10.3390/w9060409

Cutrera, G., Manfredi, L., Del Valle, C. and González, F. (1999) On the determination of the kinetic parameters for the BOD test, Water SA, 25(3), 377-380.

Dold, P. L., Ekama, G. and Marais, G. (1981) A general model for the activated sludge process, Water Pollution Research and Development, 12(6), 47-77. https://doi.org/10.1016/B978-1-4832-8438-5.50010-8

Dold, P. L., Wentzel, M. C., Billing, A. E., Ekama, G. A. and Marais, G. (1991) Activated sludge simulation programs: Nitrification and nitrification/denitrification systems (Version 1.0), Water Research Commission, Pretoria, South Africa, 90 pp.

Ekama, G.A., Dold, P. L. and Marais, G. (1986) Procedures for determining influent COD fractions and the maximum specific growth rate of heterotrophs in activated sludge systems, Water Science & Technology, 18(6), 91-114. https://doi.org/10.2166/wst.1986.0062

Espinosa, M. A., Ruiz, T. J., Hidalgo, A. and Delgado, R. (2019) Efecto de la carga hidráulica de un filtro percolador en el proceso de nitrificación, Revista Mexicana de Ingeniería Química. 18(1), 107-113. https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2019v18n1/Espinosa

Espinosa, M. A., Delgado, R. and Hidalgo, A. (2020) Evaluación de un proceso anóxico-aerobio-reactor biológico de membrana con alto contenido de nitrógeno, Revista Internacional de Contaminación Ambiental. 36(2), 303-320. https://doi.org/10.20937/RICA.53111

Fall, C., Loaiza, J. and Esparza, M. (2009) Full activated sludge model No. 1 calibration experience at a medium-size WWTP in Mexico, Water Science & Technology, 60(12), 3069-3082. https://doi.org/10.2166/wst.2009.747

Fall, C., Flores, N., Espinosa, M. A., Vázquez, G., Loaiza, J., Van Loosdrecht, M. and Hooijmans, C. (2011) Divergence between respirometry and physicochemical methods in the fractionation of the chemical oxygen demand in municipal wastewater, Water Environment Research, 83(2), 162-72. https://doi.org/10.2175/106143010X12780288627931

Henze, M. (1992) Characterization of wastewater for modelling of activated sludge processes, Water Science & Technology, 25(6), 1-15. https://doi.org/10.2166/wst.1992.0110

Henze, M., Gujer, W., Mino, T. and Van Loosdrecht, M. (2000) Activated sludge models ASM1, ASM2, ASM2d and ASM3, IWA publishing, London, United Kingdom, 120 pp.

Hvala, N., Vrecko, D. and Bordon, C. (2018) Plant-wide modelling for assessment and optimization of upgraded full-scale wastewater treatment plant performance, Water Practice & Technology, 13(3), 566-582. https://doi.org/10.2166/wpt.2018.070

Hydromantis Inc. (2014) Software GPS-X. Environmental Software Solutions, INC. https://www.hydromantis.com/

López, C., Buitrón, G., García, H. A. and Cervantes, F. J. (2017) Tratamiento biológico de aguas residuales: Principios, modelación y diseño, IWA publishing, London, UK, 576 PP.

Meknassi, Y., Auriol, M., Tyagi, R. and Surampalli, R. (2004) Treatment of slaughterhouse wastewater in a sequencing batch reactor: Simulation vs experimental studies, Environmental Technology. 25, 23-38. doi: https://doi.org/10.1080/09593330409355435

Mu’azu, N., Alagha, O. and Anil, I. (2020) Systematic modeling of municipal wastewater activated sludge process and treatment plant capacity analysis using GPS-X, Sustainability, 12, 1-26. https://doi.org/10.3390/su12198182

Myszograj, S. and Sadecka, Z. (2004) COD fractions in mechanical-biological sewage treatment on the basis of sewage treatment plant in Sulechów, Rocznik Ochrona Środowiska. 6, 233-244.

Myszograj, S., Pluciennik, E. and Jakubaszek, A. (2017) COD fractions – Methods of measurement and use in wastewater treatment technology, Civil and Environmental Engineering Reports, 24, 195-206. https://doi.org/10.1515/ceer-2017-0014

Myszograj, S. and Pluciennik, E. (2020) COD and nitrogen compounds balance in mechanical-biological wastewater treatment plant with sludge treatment, Desalination and Water Treatment, 186, 443-449. https://doi.org/10.5004/dwt.2020.25629

Naidoo, V. and Buckley, C. (2000) Municipal wastewater characterization: Application of denitrification batch tests. Water Research Commission. WRC Report No. 820/1/00, 48 pp.

Pasztor, I., Thury, P. and Pulai, J. (2009) Chemical oxygen demand fractions of municipal wastewater for modeling of wastewater treatment, International Journal of Environmental Science Technology, 6, 51-56. https://doi.org/10.1007/BF03326059

Pluciennik, E., Jakubaszek, A., Myszograj, S. and Uszakiewicz, S. (2017) COD fractions in mechanical biological wastewater treatment plant, Civil and Environmental Engineering Reports, 24, 207-217. https://doi.org/10.1515/ceer-2017-0015

Pluciennik, E. and Myszograj, S. (2019) New approach in COD fractionation methods, Water, 11, 1-12. https://doi.org/10.3390/w11071484

Ramalho, R. S. (1991) Tratamiento de aguas residuales. Editorial Reverté S.A., México, 705 pp.

Roeleveld, P. J. and Van Loosdrecht, M. (2002) Experience with guidelines for wastewater characterization in the Netherlands, Water Science and Technology, 45 (6), 77-87. https://doi.org/10.2166/wst.2002.0095

Sadecka, Z., Płuciennik, E. and Sieciechowicz, A. (2011) Frakcje ChZT ścieków w modelach biokinetycznych, Forum Eksploatatora, 54(3), 72–77.

Sokolowska, J. (2011) Changes of COD fractions share during municipal wastewater treatment with big dairy wastewater participation, Rocznik Ochrona Środowiska, 13(1), 2015-2032.

Sokolowska, J. and Tkaczuk, J. (2018) Analysis of bakery sewage treatment process options based on COD fraction changes, Journal of Ecological Engineering, 19(4), 226-235. https://doi.org/10.12911/22998993/89653

Tchobanoglous, G., Burton, F. and Stensel, H. (2003) Waste¬water engineering, treatment and reuse, Mc.Graw Hill, Inc., USA, 1819 PP.

Torrijos, M., Cerro, R., Capdeville, B., Zeghal, S., Payraudeau, M. and Lesouef, A. (1994) Sequencing batch reactor: A tool for wastewater characterization for the IAWPRC model, Water Science and Technology, 29(7), 81-90. https://doi.org/10.2166/wst.1994.0314

Van Loosdrecht, M., López, C., Meijer, S., Hooijmans, C. and Brdjanovic, D. (2015) Twenty-five years of ASM1: past, present and future of wastewater treatment model¬ling, Journal of Hydroinformatics, 17(5), 697-718. https://doi.org/10.2166/hydro.2015.006

Vázquez, G., Ortega, R. E., Esparza, M. and Fall, C. (2013) Fraccionamiento de la DQO del agua residual de Toluca por el protocolo STOWA, Tecnología y Ciencias del Agua, 4(2), 21-35.

Wentzel, M. C., Mbewe, A., Lakay, M. T. and Ekama, G. A. (1999) Batch test for characterization of the carbonaceous materials in municipal wastewaters, Water SA, 25(3), 327-335.

WERF (2003) Methods for wastewater characterization in activated sludge modelling, 1st ed, WERF publication no. 9 WWF3, Water Environment Research Federation: Alexandria, Virginia, 120 PP.

Xu, S. and Hultman, B. (1996) Experiences in wastewater characterization and model calibration for the activated sludge process, Water Science and Technology, 33(12), 89-98. https://doi.org/10.1016/0273-1223(96)00462-3