

Editorial

Nanomaterials with Antibacterial Effect in Dentistry

Alejandro L. Vega-Jiménez¹,
Adriana Patricia Rodríguez-Hernández²

¹ Laboratorio de Bioingeniería de Tejidos.

² Laboratorio de Genética Molecular.

División de Estudios de Posgrado e Investigación. Facultad de Odontología, Universidad Nacional Autónoma de México.

Received: 11 March 2025

Accepted: 14 March 2025

Cite as:

Vega-Jiménez AL, Rodríguez-Hernández AP. Nanomateriales con efecto antimicrobiano en Odontología. [Nanomaterials with Antibacterial Effect in Dentistry.] *Rev Odont Mex.* 2025; 29(1): 1-2. DOI: 10.22201/fo.1870199xp.2025.29.1.91070

Bacterial infections continue to be one of the main challenges in dentistry today, contributing significantly to periodontal diseases, caries, and restorative treatment failures. Microbial resistance and the formation of biofilms have limited the effectiveness of conventional treatments, which has prompted the search for innovative strategies. Among these, nanomaterials with antibacterial properties have emerged as a promising solution¹.

Nanomaterials, such as silver nanoparticles (AgNPs), zinc oxide (ZnO), copper nanostructures, and magnesium (Mg)-based composites², have demonstrated significant antibacterial activity against oral pathogens such as *Streptococcus mutans*, *Porphyromonas gingivalis* and *Enterococcus faecalis*, among other dental biofilm-forming species. These materials act through various mechanisms, including alteration of the bacterial cell membrane, generation of reactive oxygen species (ros), and inhibition of metabolic processes essential for bacterial replication and survival³. Recent findings suggest that the incorporation of nanomaterials in composite resins, dental cements, and implant coatings not only improves their mechanical properties but also reduces the risk of postoperative infections. In addition, studies have shown that some of

these nanomaterials have low cytotoxicity in human tissues, reinforcing their potential for safe clinical applications⁴.

Despite these advances, significant challenges remain; among them, the regulation and approval of these materials for clinical use require rigorous evaluations of their biocompatibility and long-term effects. In addition, research must focus on developing formulations that maximize antibacterial activity without compromising patient health. It is also essential to evaluate the environmental impact of these materials since their uncontrolled release could generate ecological problems in the future. Another crucial aspect is the accessibility and cost of these treatments. Although nanotechnology offers innovative solutions, its large-scale implementation in dental practice requires strategies that allow its production at reasonable costs, ensuring that the benefits reach a larger population.

In conclusion, nanomaterials with antibacterial effects represent a revolutionary alternative in dentistry, offering an effective solution to fight persistent endogenous and nosocomial infections. However, it is essential to continue exploring their clinical application with additional studies to ensure their safety, accessibility, and feasibility in dental practice. Collaboration between scientists, clinicians, and regulatory bodies will be the key for this technology to become standard in the prevention and treatment of oral diseases.

BIBLIOGRAPHIC REFERENCES

1. Yin IX, Uddutulla A, Xu VW, Chen KJ, Zhang MY, Chu CH. Use of antimicrobial nanoparticles for the management of dental diseases. *Nanomaterials (Basel)*. 2025;15(3): 209. DOI: 10.3390/nano15030209
2. Vega-Jiménez AL, González-Alva P, Rodríguez-Hernandez AP, Vázquez-Olmos AR, Paz-Díaz B. Oxide nanoparticles based in magnesium as a potential dental tool to inhibit bacterial activity and promote osteoblast viability. *Dent Mater J*. 2024; 43(1): 11-19. DOI: 10.4012/dmj.2023-041
3. Vega-Jiménez AL, Vázquez-Olmos AR, Acosta-Gío E, Álvarez-Pérez MA. In vitro antimicrobial activity evaluation of metal oxide nanoparticles. *IntechOpen*. 2019; DOI: 10.5772/intechopen.84369
4. Bourgi R, Doumandji Z, Cuevas-Suárez CE, Ben Ammar T, Laporte C, Kharouf N, et al. Exploring the role of nanoparticles in dental materials: A comprehensive review. *Coatings*. 2025; 15(1): 33. DOI: 10.3390/coatings15010033