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ABSTRACT

This article provides an overview of Artificial Neural Networks (ANNs), including
architecture and several learning algorithms. Reviewed algorithms include Hebbian,
Rescorla-Wagner, Sutton-Barto (1981), and Hutchison’s. In addition, the contributions
Behavior Analysts have made to ANN development, as well as the effect ANN's have
made on behavior analysis, is discussed. Finally, several applications of ANNs by
Behavioral Analysts are reviewed.
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RESUMEN

Este articulo provee un vistazo a las redes neurales artificiales (ANNs),
incluyendo su arquitectura y varios algoritmos de aprendizaje. Los algoritmos revisados
incluyen el Hebbiano, el de Rescorla-Wagner, el de Sutton-Barto (1981) y el de
Hutchison. Ademads, se discuten las contribuciones que los analistas conductuales han
hecho al desarrollo de las ANNs, asi como el efecto que éstas han tenido sobre los
analistas conductuales, Finalmente, se revisan varias aplicaciones de las ANNs por parte
de los analistas conductuales.
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Artificial Neural Networks (ANNs), in general, are computer programs
that learn. An ANN program consists of a network of interconnected units or
nodes, each node a simple processing element. These simple elements are the
artificial neurons of the ANN and loosely follow the principles that
neuroscientists have learned about the nervous system.

ANNs resemble the brain in that the network learns, and that
interneuronal connection strengths {numerical weights in the ANN version) is
the basis of that learning (Haykin, 1994). Some Behavior Analysts have
proposed that, in addition to modeling the neuronal structure of the brain, ANNs
should adhere to molar characteristics as well. For example, Donahoe, Burgos,
and Palmer (1993) suggest that ANNs should incorporate collections of nodes
that project to each other, as the brain has projections from the ventral
tegmental area to the motor association areas, to name one of many such
projections (see also Donahoe & Palmer, 1994). Probably a more fitting name
for such arrangements is “adaptive system” in that it is composed of more than
just a neural net. This paper will only address simpler models, ones that do not
incorporate such collections of nodes with projections and accordingly we will
refer to these systems as ANNs although “adaptive system” is just as apt a
name.

ANNs can be distinguished from early investigations into so-called
"Artificial Intelligence”. In general, this approach advocated the encoding of
rules which the computer would follow given different inputs, presumably
simulating the skills of an expert. These systems were usually designed to aid
users in making decisions and generally followed a pattern of building up a
knowledge base and coupling this with “if-then” rules (Hutchison, 1984;
Stephens & Hutchison, 1993; Winograd, 1990). These systems were heavily
influenced by cognitive science’s penchant for claiming that “production rules”
and “schemas” account for much of human behavior {Anderson, 1980).
Although some successful applications resulted from this approach, a number
of researchers have pointed out that this methodology is confined and is
unlikely to ever completely model human behavior as we know it (Bechtel &
Abrahamsen, 1991; Schlinger, 1992; Stephens & Hutchison, 1993).

ANNs have been used for a variety of purposes and applications. They
are being successfully applied across such diverse areas as finance, medicine,
engineering, geology and physics (Statsoft, 1999), ANNs are used in
investment analysis, signature analysis, process control, engine monitoring
(aircraft and train), and in marketing (Smith, 1998). ANNSs are particulary useful
in situations in which a high degree of flexibility is needed to deal with
significant variations in the environment (Zomaya, 1994). That is, the specific
operating parameters of the situation are unknown in advance (as well as
unstable) and must be learned (and updated) from the environment, a task
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traditional computer programs cannot handle. ANNs, however, are capable of
such tasks (behaviors), similar to an organism in its environment. Obviously,
Behavior Analysis has much to contribute to how such systems interact with
their environment. It is this, along with the fact that ANNs can function as a
model of behavioral principles that they are of importance and utility to Behavior
Analysts.

As mathematical models of real neural systems, ANNs can be employed
as an interpretive tool (Donahoe & Palmer, 1989). This allows for theoretical
work to be carried out on behavioral principles by means of computer
simulation (Donahoe et al., 1993). Additionally, Behavior Analysis could benefit
from the recognition of being instrumental in the ongoing development of ANNs
and in contributing to the general understanding of how simple processes come
to produce complex behaviors. In this paper we will provide an overview of
ANNSs, and discuss some of the reasons why Behavior Analysts have become
interested in them,

The Nature of Artificial Neural Networks

First, let us look at ANNs from a behavioral/organismic perspective. First,
we would be interested in the nature of the organism we are dealing with —
does it have good hearing (thus we might use auditiory stimuli effectively) and
color perception? Does the organism have a keen sense of smell? Researchers
typically examine these issues prior to working with an organism to determine
the sensory capacities of the organism. When using a computer, we are talking
about inputs, such as keyboard input or input from a mouse (the computer is
designed to detect mouse clicks and key presses). Small video cameras are
becoming more prevalent, which allow visual signals to be input into the
computer, as well as sounds via the use of a microphone. Therefore, computers
are able to sense the world to the extent that we design instruments that detect
environmental changes and create the appropriate interface for the computer.
Here is a short list, other than those already mentioned, of types of inputs that
can be arranged for a computer:

Temperature and changes in temperature
Electromagnetic fluctuations

Touch, including hardness, texture, etc.
Position (e.g. vestibular)

Kinesthetic (position of limbs, etc.)
Acceleration/deceleration

Movement sensors

Edge detectors

Distance meters
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Although this is not a comprehensive list, one can see that a computer
can be fitted with a wide array of input/sensory devices.

In examining an organism, we are also interested in what type of
responses such an organism can emit. It is clearly understood that pigeons will
more readily learn a keypeck, versus a treadle press. Humans will never learn
to swing from trees by their tails, for obvious reasons. Typical computer
outputs include images on a screen, sounds from speakers, characters on a
printer and packages of data sent over the internet. However, while these are
standard outputs (which we can think of as responses), there are innumerable
types of outputs a computer can have, limited only by the technology available.
Here is a list of potential outputs:

® Motors that turn in horizontal and vertical directions, for specified
amounts of time. These can do such things as lift, open and close a
mechanical hand or leg; turn, lower and raise an input camera; provide for
various forms of locomotion for the computer.

& Open and close any other type of circuit, thus controlling many types
of electrical/mechanical instruments.

& Output to a speaker, thus allowing the computer to produce speech-like
sounds, as well as other audio outputs.

Although researchers seldom examine the neurophysiological system of
an organism they would like to work with, this is the essence of ANNs and will
be discussed here in some detail. As noted earlier, this system is loosely
modeled after what we know about brain neurophysiology. Namely, artificial
neurons function in a manner similar to biological neurons - they receive inputs
and if activated, emit an output. When implemented in a computer program,
these neuronal-like objects are called nodes, and a single ANN may consist of
only a few nodes or a million or more. ANNs are often represented by diagrams
such as Figure 1. This diagram illustrates the relationships between inputs
(represented by the “I” nodes, and outputs (represented by the “O” nodes, with
nodes sometimes being placed between the two, which are analogous to
interneurons in an organism, and constitute what are often called hidden layers
by ANN researchers (Wasserman, 1989). The basic system is an attempt to
roughly model the nervous system of an organism. That is, the inputs are
roughly analogous to the sensory inputs of an organism, which on a computer
may be visual input (a video camera), sound input (audio files or live audio via
a microphone), while the outputs may be a mechanical arm movement, or a
sound from a speaker as discussed earlier. For our purposes, the inputs and
outputs used in these networks are arbitrarily chosen (i.e. a “1"” or an “A"), as
is often the case in the experimental analysis of behavior {(see Skinner, 1969 for
a complete analysis).
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Figure 1. Simple illustration of an ANN. The “i” refers to inputs, the “o” to outputs. All
layers actually receive inputs and generate outputs, so these labels are for convenience only and
to indicate the direction of processing. See text for details.

Consulting Figure 1, it can be seen that often all nodes in a ANN are
connected to all other nodes, in a “feed-forward” manner, that is, they do not
have lateral connections, or reverse or self-stimulating connections, although
some researchers do incorporate these designs, but they will not be discussed
here. One can think of the connections as presynaptic (feeding into a node)
and postsynaptic connections (an output from a node and functioning as an
input - presynaptic - for a trailing node). The inputs and outputs, keeping with
math as the language of computers, is often just a number. For example, if an
“A” is presented to an input node, and that node is activated by such a visual
stimulus, then the node may send a “1” along all of its connections. If that
node is activated by only auditory stimuli, then it may send a “0” along its
connections, or simply not be active. The connections between nodes (e.g. in
Figure 1 between the inputs and the internodes) are often weighted. In fact, it
is changes in these weights what generally defines learning in ANNs. The
values of these weights are often set between O and 1, and influence how
much of an impact an input has. For example, say that we present a bright
visual stimulus to one of the input nodes in Figure 1. The node interprets
(according to the visual sensor we have supplied the computer with) the input
as a value of 2, that is, a relatively bright light. This value will be sent along all
of the connections that node has, and each of those is weighted. If the first has
a weight of 1 then the entire 2 value will be sent to the internode along that
connection (2*1=2). If the second has a weight of 0.5, then the node at the
end of that connection will only receive a value of 1 (2¥0.6=1) (Caudill &
Butler, 1993; Wasserman, 1989). A threshold value is often incorporated within
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a node, which is simply a criterion level for input values to meet before the
node emits a response. Thus if a node has a threshold value of 3 and receives
a total input value from all the nodes feeding into it of only 2.95, then that
node will not “fire”, that is send any values along to its connections. The
network models discussed in this paper utilize an “all-or-none” output pattern,
thus a node generates an output or it does not (thus 1 or 0). Some researchers
have created networks that utilize continuous output, although they will not be
discussed here (Wasserman, 1989). It is also possible to have negative (or
inhibitory) connection weights and input values, but these will not be discussed
in this introductory paper.

Notice that “knowledge” or responses are not hardwired or stored in a
particular place in an adaptive system, but are distributed as a pattern of
weights across nodes (Caudill, 1987). Feedback introduced back into the
network allows the network to “learn” (for connection weights to change) from
its responses. A number of techniques have been used which change the
connection weight between inputs and nodes; several are discussed below.

Learning Algorithms

The Hebbian Model

Many current adaptive systems incorporate all or part of Hebb’s (cited
in Wasserman, 1989} general rule that if the source and destination neuron {(or
node in the ANN case) are both activated on any given trial, then the pathways
in that connection are strengthened, or in the case of ANNs, the connection
weights are increased (Wasserman, 1989). An equation for the Hebbian model
follows:

wilt+1) = wylt) + a-loft)-oft)]

Where w;{t+ 1) refers to the weight of the connection between any two
nodes “/" and “/” at time-step r+1 (that is, the new weight at the moment
immediately after learning occurs), and w(t) refers to the weight of the
connection between / and j at t (the current trial). The ‘a’ is a learn-rate
coefficient (a rate at which modification of the weights occurs, usually set
between O and 1), while oft) and o(1?) refer to the outputs of / and j,
respectively, which are generally valued at 1 (an output occurred) or O (no
output occurred). Given the above equation, the weight of a particular
connection will change (i.e., be increased by the amount of the learning rate,
e.g., 0.1) if an output is generated by both j and j. If an output is generated by
/ but not by j, then of{t)-o{t) will be zero and no weight change will occur
{Caudill & Butler, 1993; Wasserman 1989).
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Figure 2. An illustration of the Hebbian learning algorithm. Each panel represents a trial.
In the upper panel (first trial), Node A is not active, meaning that the neutral stimulus {NS) is not
present. The equation for each trialis: w(t+ 1) = w{t) + a'[o{t)-0{t)], where @ = 0.1 in this case.
Eventually, A’s weight will reach 0.5, surpassing the threshold value for C and triggering the
response. At this point we could label the NS a conditioned stimulus (CS). See text for details.
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The Hebbian model has been espoused as a very simple model of
respondent learning (Caudill & Butler, 1993; Sutton & Barto, 1981). Take the
example of two nodes A and B (input nodes) that are connected to a third node
C. The connection weight between B and C is of sufficient magnitude to cause
C to produce an output when B is activated. However, the connection weight
between A and C is too small for A alone to produce an output in C. Stated in
behavioral terms, analogously this reads: stimulus B elicits a response in C, but
A does not. We can refer to B as an unconditioned stimulus (US) and A as a
neutral stimulus (NS). Given the learning algorithm stated above, if A and B are
both activated, the fact that B will generate an output in C will cause the
connection weight from A to C to increase (by the amount of the a). With
repeated pairings, A, when activated alone, will come to generate an output in
C (see Figure 2 for an illustration of this process). If A's activation was paired
with another node’s activation that did not activate C, that new node would do
so after repeated pairings {i.e., which would simulate a form of second-order
conditioning. (Sutton & Barto, 1981). As noted above, the Hebbian model is
very simple. While demonstrating some of the basic elements of respondent
conditioning, it fails to demonstrate others such as blocking and
overshadowing, or even the necessary temporal relationship of stimuli (Caudill
& Butler, 1993; Sutton & Barto, 1981). Researchers have attempted to rectify
these shortcomings as noted below.

Sutton and Barto’s Model

Sutton and Barto (1981) were familiar with research in nonhuman
learning and applied this to the design of their adaptive systems. The authors
incorporated both the Hebbian model and the Rescorla-Wagner (1972) model
of respondent learning in their learning algorithm. In general, the Rescorla-
Wagner model states that learning is a function of the difference in the amount
that a conditioned stimulus (CS) elicits a conditioned response, and the amount
that an US elicits an unconditioned response (UR) {(Mazur, 1986). “Amount”
refers to the magnitude of the response under consideration and may include
a variety of dimensions. These researchers assume that a US elicits a UR of a
specific and maximum or asymptotic magnitude, labeled “Aj”", A general
equation for their proposition is:

AV, = a:(A- V)

AV, refers the amount of change in the power of a particular CS 7 to elicit the
CR (this is simply a connection weight), a, is a coefficient indicating the salience
of the CS (normally set between O and 1), A refers to the maximum (or
asymptotic) magnitude of response elicitation by the US, and V is the sum of
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response strengths generated by all CS (or potential CSs) present on any given
trial (cited in Mazur, 1986; Sutton & Barto, 1981). Three general rules can be
generated from this model:

1. IfA -V > 0, then the CS will be strengthened;

2. If A-V <0, then the CS will be weakened;

3. If A- V = 0O f{i.e., the sum of all CSs elicit the same response magnitude as
the US), then the CS will be not be changed. That is, no learning will take
place (Mazur, 1986).

This model has been shown effective in predicting blocking,
overshadowing and conditioned inhibition {(Mazur, 1986), although it does have
weaknesses, namely in predicting conditioning changes based on the temporal
relationships of the CS and the US (Mazur, 1986; Sutton & Barto, 1981).
These shortcomings are unimportant for our current analysis.

Sutton and Barto (1981) incorporated the Rescorla-Wagner model in
their adaptive system learning algorithms. The addition of this model aliows for
increments and decrements in the weights assigned to a particular network
connection, unlike the basic Hebbian model, which only allows for increasing
connection weights. A simple version of Sutton and Barto’s learning algorithm
as compared to the Rescorla-Wagner equation appears below:

Rescorla & Wagner: AV, = a4 - V)

Sutton & Barto: AWt} = c-[Y(1) - ZWX|(t-1)]'x(t-1)

Where AW(t) refers to the change in the connection weight of /at t. Thec s
a learning-rate coefficient, similar to the o used in the Hebbian model and the
Rescorla-Wagner model. The Y({t) is the maximum value of the US output at ¢.
The ZW)X/(t-1) refers to the sum of all the weighted connections for all inputs
X; and weights W, at t-1. The last part, x,(t-1), is similar to the Hebbian model.
This indicates whether or not x; was activated (i.e., generated an output) at t-1.
If an activation occurred, then x/{t-1) = 1, allowing for the change in
connection weight to be modified by the difference in the value of the output
by the US and the sum of the outputs by all CSs present on any given trial. If
an activation occurred, then x,{t-1) = O and the total change in W{t) will also
be 0. That is, [Y{?) - ZWiXi(t-1)] will evaluate to O.

Sutton and Barto created an ANN using this algorithm and found that
this model performed similarly to the Rescorla-Wagner model, demonstrating
blocking, overshadowing and conditioned inhibition (Sutton & Barto, 1981).
These researchers went on to implement modifications to their model which
overcome some of the temporal issues discussed above, although they will not
be discussed here.
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Hutchison & Stephens’ General Model

Hutchison (1984, 1998a) and Stephens and Hutchison {1993) have
described an adaptive system which simulates operant conditioning. For our
purposes, a series of arbitrary stimuli can be first defined for use by the system,
for example, "S1, S2, S3, S4". Then a series of responses is also defined, for
example "R1, R2, R3, R4" (they can also be acquired responses, but for this
example we will assume an existing repertoire). Each stimulus is connected to
each response. These connections are weighted, that is they are assigned a
value. However, instead of using the weight to calculate whether or not a
threshold value is reached, the weight determines the strength of each response
available to the system. When a stimulus is presented, the computer
determines the value of the weights between stimuli and responses, then emits
the response with the highest value. A clarifying analogy is the probability that
a pigeon in an operant chamber will peck the lighted right key, versus emitting
some other response such as pecking the left key or turning in a circle. In a
single trial situation, the user, environment, or the computer if it is set up to do
so, reinforces, punishes or provides no consequence for the response. This is
accomplished by associating a response with a value, for example + 1 as a mild
reinforcer, -1 as a mild punisher, and O for no consequence. The absolute value
of the positive or negative number determines the magnitude of the reinforcer
or the punisher. A slight negative cost (e.g. -.2) is implemented upon each
response emitted to account for responsé cost and the prolonged effect of no
consequence (extinction). These consequence values are used to modify the
weights between appropriate stimuli and responses. As in the Rescorla-Wagner
model, an asymptotic value is used. This asymptotic value is the value of the
consequence delivered on any given trial, or as shown later, the consequential
value of response-produced stimuli. A simple equation for this type of
algorithm is:

Wjlt+1) = Wyl) + alCv - Wiin]

Where W,{t+1) refers to the connection weight between an appropriate
stimulus 7/ and a response j at t+ 1. W,(t) is the current weight before the
consequence is delivered. As before, a refers to a learning-rate coefficient. Cv
refers to the consequence value (e.g., +2). Consider this example: the
computer is arranged in such a manner to recognize the stimutus S1 and can
respond with responses R1 and R2. Initial response values (or connection
weights) in the presence of S1 is 0.3 for Rt and 0.1 for R2. When S1 is
presented, R1 will be emitted by the system, because it has the highest value
(0.3) of all responses available to the system. The value of the consequence
delivered to the system is + 1. Given the equation above, the new value of R1
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in the presence of S1 will be the result of the asymptotic value of the response
(the value of the consequence, in this instance + 1) minus the prior value of the
response (0.3), multiplied by the learning rate (0.2 for this example). This will
all be added to the previous value of the response {0.3). For clarity’s sake we
are ignoring the response cost described above. The calculations follow:

Wi mlt+1) = 0.3 + 0.2(1 - 0.3)

W mt+1) = 0.3 + 0.14

W m(t+1) = 0.44,

An interesting difference between this model and the Rescorla-Wagner
model is that the asymptote value is not fixed from trial to trial, it is the value
of the consequence, which may or may not remain constant, depending on the
contingencies in effect. Also note that this equation does not specify which
connections are strengthened, but as noted before, it is the connection between
the stimuli presented and response emitted (or more behaviorally, the strength
of R1 in the presence of S1). In Hutchison’s model often there are many stimuli
present on a trial, each contributing to the value of each response. It should
also be noted that a negative or a zero value for a consequence will likely
reduce the S1—= R1 connection, which will increase the likelihood that R2 will
be emitted.

Hutchison (1984, 1998a) has combined elements of respondent and
operant conditioning into his model. An example will illustrate this. Using
Wormilt+1) = WD) + alCv - Wy, (8] from above, with @ = .2, the following
scenario depicts a two-link chain of responses shaped by backward chaining.
For our purposes it is not necessary to discuss the shaping process. The
process is picked up after responding is nearly stable, but not at asymptotic
values.

An ANN is arranged to recognize S1 and to emit R1 and R2, and the
network has been shaped to emit R2 after R1 in the presence of S1, at which
point a consequence of +2 will be delivered. The values of R1 and R2 in the
presence of S1 are 0.3 and 0.1, respectively. Since the value of R1 is largest,
this response will be emitted. As it is emitted, the system is arranged in such
a way as to also treat the occurrence of that response as a response-produced
stimulus, which for convenience Hutchison calls “Did R1”, In the presence of
“Did R1” the value of R1 is 0.1 and the value of R2 is 0.6. Since the value of
R2 is a higher value than R1, it will be emitted. Before it is emitted, however,
we can calculate the new value of the relationship between S1 and R1. This
is calculated by using the value of R2, which is 0.6. This value can be thought
of as the conditioned reinforcing value of R2 (or the response-produced
stimulation of R2) on R1. The calculation for this is:

Wy mi(t+1) = 0.3 + 0.2(0.6-0.3)

Wy mi(t+1) = 0.3 + .06



152 BILL POTTER AND MICHAEL WILSON

W mlt+1) = .36

Notice that the asymptotic value is the value of R2 (0.6), which
Hutchison refers to as the value of the new situation presented. Then, when
R2 occurs a consequence value of + 2 is delivered and the relationship between
stimulus “Did R1” (R1’s response-produced stimuli) and R2 is strengthened as
follows (where S2 = Did R1):

Weomlt+1) = 0.6 + 0.2(2-0.6)

W, polt+1) = 0.6 +0 .28

Wi, molt+1) = 0.88

If a new trial is started in which S1 is again presented, the process will
occur again with these new stimulus-response values being used. It can be
seen that the response-produced stimulus “Did R1” is functioning similarly to
a conditioned reinforcer, and with repeated trials will ultimately arrive at a value
equal to the value of the reinforcer, if the reinforcer remains constant. This is
similar to the Rescorla-Wagner model in that the CS eventually comes to elicit
a response of the same magnitude as does the US.

Although this is a simplified version of the Hutchison and Stephens’
algorithm, it functions to show how simple operant and respondent conditioning
can be implemented in an adaptive system. Hutchison (1984,1998a) notes that
the above described adaptive system demonstrates many established behavioral
phenomena such as stimulus control, chaining, generalization and
discrimination. The current system Hutchison has developed incorporates real-
time audio and visual inputs, and has response outputs which are grouped into
five movement areas: lips, glottals, tongue, velum, and aspiration. These
correspond to the major components of the human articulatory system. One
response (or position) can occur from each category on each time step, and
each of the five is arranged to occur in parallel. While this is much more
complex system than described in this paper, the basic learning algorithm is
similar.

Il

Behavioral Analysis Contributions to Adaptive Systems

Behavior Analysis has as one of its focuses the problem of accounting
for complex behavior by the learning of simpler behavior (Donahoe, 1991:
Donahoe and Palmer, 1989, 1994; Hutchison, 1984), Such techniques as
shaping, chaining, and fading are noted to be training techniques which may
lead from simpler to more complex behaviors. Donahoe and Palmer (1989)
report that little or no work has been conducted with networks utilizing shaping
or training. They did report one experiment in which fading was used to train
an ANN, resulting in a 75% reduction in trials needed as compared to normal
training procedures. To date few researchers are using ANNs in behavioral
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research, although the number has increased (e.g., this issue; and Donahoe,
1998; Donahoe & Palmer, 1994; Donahoe, Palmer, & Burgos, 1997; Hutchison,
1998b).

Schlinger (1992) notes that the field of “Artificial Intelligence” has not
been successful in modeling “intelligence” because the researchers have
adopted an essentialist model of natural intelligence. He suggests that these
failures might be overturned when a selectionist model is adopted. Palmer and
Donahoe (1992) argue that the features of ANNs classify them as operating
within the selectionist framework, although some connectionists deny any
affiliation with radical behaviorism (Rummelhart & McClelland, 1986).

In a similar vein, Hutchison (1985} and Hutchison and $Stephens (1987a)
note that at least one researcher has divided “artificial intelligence” into two
broad camps, structuralists and functionalists. Hutchison and Stephens believe
this division roughly corresponds to the division between the behavioral and
cognitive communities and conclude that “the case is compelling that behavior
analysis provides a more natural model for adaptive systems than does
cognitive science” (p 14). Kehoe (1989) in illustrating connectionist adaptive
system architecture, draws the conclusion that the algorithms show that
behavioral principles have been incorporated into their formulation. Sutton and
Barto (1981) concur with this thinking stating “animal learning theory
constitutes a large body of carefully explored and tested theory about
fundamental processes of learning” (p 135). While the authors are not
behaviorists, their work incorporates many basic behavioral principles. Finally,
Bechtel and Abrahamsen (1991), both connectionists, have noted that a return
to parsimony is being advocated within their field, and note that parsimony is
a characteristic of behaviorism.

Contribution of ANNs to Behavior Analysis

The use of models in psychology is a long accepted practice. Models
aid science in organizing and aiding in the interpretation of data, in addition to
pointing to new research directions (Bush & Mosteller, 1955). The introduction
of computer simulations into behavioral psychology prompted one behaviorist
to call the computer application that embodies behavioral principles as “a theory
of behavior” (Cook, 1994). Cook adds that computer simulations of behavior
are useful in that they allow for multiple derivations to be carried out rapidly
and at low cost and effort, and for access to covert behaviors. Cook warns,
however, that unchecked “theorizing” may lead to disenchantment from the
original purposes of the research. Donahoe (1991) also notes that networks
allow for the extension of behavioral principles observed overtly to covert
events, which he argues demonstrate that such principles are sufficient to
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explain certain behaviors.

Hutchison (1984) notes that ANNs can be an invaluable tool in
ascertaining the training necessary for developing complex behaviors. On a
more personal note, he claims that developing his ANN model forced him to
consider theoretical and practical issues not normally raised in the course of
discussing behavioral issues, in essence shaping his behavior toward a more
molecular analysis of behavior (personal communication, July 31, 1994). He
notes that this may have value by developing a more exact science of behavior.

Donahoe and Palmer (1989; 1994) argue that ANNs are a powerful tool
for formal interpretation in the behavioral sciences. The authors define formal
interpretation as a method of using principles derived from experimental
analyses, versus mere speculation that may not be constrained by those
principles. They note that new principles are not uncovered in formal
interpretations, but that new aspects of existing principles may be revealed.
Donahoe, Burgos and Palmer (1993) in concurrence with Hutchison, argue that
complex behavior, built up from a prolonged history of more simple
reinforcement processes, often precludes the use of experimental regimens,
Given the assumption that complex behavior is built from simpler processes, the
authors argue that an ANN is an efficient method of conducting such formal
interpretations.

Shimp (1989) adds to these arguments, stating “A theory that behaves,
that produces a stream of behavior, would seem in an intriguing way, to fit
better with Skinner’s criterion for a good theory than do many other sorts of
behavioral theory” (p. 169). Shimp is referring to computer simulations of
behavior and with his reference to “other sorts of behavioral theory” to
mathematical models.

Some Behavior Analysts have argued against the use of computers in
this manner. Vargas (1991) argues that the computer’s responses are
mechanical, that its responses are set prior to an event that might trigger that
response. He notes that the computer’s responses would have to come in
contact with and be shaped by the environment to be effective in
demonstrating complex human behaviors. It is interesting to note that his
criticisms are directed (although not explicitly) against the use of rule-based
computer systems designed to demonstrate human behavior, and his
suggestions for improvement point in the direction of currently available ANNs.
Epstein’s (1986) criticisms are nearly identical to Vargas, noting that a premise
behind most computer applications designed to model human behavior is that
humans behave the way they do because they are information processors,
using rules that resuit in complex behaviors. It is interesting to note that
Epstein (1993) is now using computer simulations to aid his research in
generativity theory.
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Staddon (1988) criticized the use of a computer simulation to model
choice behavior. Although the specific simulation he criticized did not utilized
an ANN, his arguments hold for ANNs. Staddon notes that the computer
simulation forces the programmer to make specific assumptions, for example
about the length of “short-term memory” or temporal distributions of
responding. This is true of any system that attempts to model phenomenon
that are not completely describable. Hutchison (1984), as noted above, lists
this as an advantage of using computer modeling as it forces him to address
those assumptions. Additionally, Cook (1994) notes that the computer offers
the flexibility to modify or adjust those assumptions quickly and observe the
outcomes. Staddon (1988) notes however, that the success or failure of such
models may depend on some unaddresssed assumption made on the
programmer’s part. Staddon (1993; Staddon & Zhang,1991) has also recently
become interested in the use of computer simulations of adaptive behavior.

Some Applications of ANNs

Behavior Analysts have begun to apply ANN technology in both
experimental (Donahoe, et al.,, 1993; Kehoe, 1989) and applied settings
(Hutchison, 1998a; Hutchison & Stephens, 1987b; Stephens & Hutchison,
1992, 1993). Donahoe et al. {1993} have used an ANN to examine the utility
of the unified reinforcement principle. Kehoe (1989) has examined the use of
connectionist models of conditioning for investigating operant and respondent
conditioning. Other researchers have used ANNs to also investigate operant
and respondent behavior, although these researchers do not affiliate themselves
with the behavioral sciences. Maki and Abunawass (1991) investigated the use
of an ANN to simulate matching to sample (MTS), although his interpretations
are from a connectionist framework. Rummelhart and McClelland (1986)
successfully trained an ANN to learn the past tense of English verbs. Sutton
and Barto (1981) examined the use of a network to model various aspects of
respondent conditioning, while Barto, Sutton, and Anderson (1983) successfully
trained an ANN to increase its ability to balance a pole. Although these
examples are not exhaustive, they illustrate some successful implementations
of ANNs applicable to the experimental analysis of behavior.

Other Behavior Analysts have successfully implemented ANNs based on
behavioral, economic and evolutionary sciences (Hutchison & Stephens, 1987b;
Stephens & Hutchison, 1993). Used in the airline industry, Stephens and
Hutchison’s system predicted optimal seat allocations on commercial airlines.
The same authors are in the process of developing a program using an ANN to
teach language-impaired children to learn the elementary verbal operants. The
ANN is designed to recognize vocal verbal behavior and respond appropriately.



156 BILL POTTER AND MICHAEL WILSON

The logical extension of this, as described by Stephens and Hutchison (1992)
in a related paper, is to demonstrate proficiency in responding to natural
language through “emulating the functional properties of verbal behavior as
described by Skinner (1957)" (p 152).

It is hoped that this paper has demonstrated the general utility and
nature of ANNs. It seems to us that Behavior Analysts are in a prime position
to contribute to the ongoing development of ANNs. The data obtained from the
experimental analysis of behavior has already made great contributions to ANN
development, and is likely to contribute more in the future. Considering the
proliferation of computers and computer technology, this is also likely to
increase the exposure and general acceptance of behavior analysis.
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