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Abstract

Behavioral models of signal detection have focused almost exclusively on 
the effects of reinforcement for correct choices. In contrast, the effects of 
punishment for errors have been largely ignored. Two competing models of 
punishment can be derived from research using simple concurrent-schedule 
procedures. Subtractive models predict that punishers directly subtract from 
the effects of reinforcers for the same response alternative, and additive mod-
els predict that the effects of punishers add onto the effects of reinforcers 
obtained for the other response alternative. These two models were incorpo-
rated into Davison and Tustin’s (1978) model of signal-detection performance. 
Some preliminary research using human subjects in a signal-detection proce-
dure provides support for an additive punishment version of the Davison and 
Tustin model. 

Keywords: signal detection, punishment, response bias, human.

resumen

Los modelos conductuales de detección de señales se han focalizado casi 
exclusivamente sobre los efectos del reforzamiento para elecciones correc-

1.	 Celia Lie, School of Psychology, Victoria University of Wellington, P.O. Box 600, Wellington, New 
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tas. En contraste, los efectos del castigo por errores han sido largamente 
ignorados. Se pueden derivar dos modelos competitivos del castigo a partir 
de la investigación con programas concurrentes simples. Modelos sustracti-
vos predicen que los castigadores sustraen directamente de los efectos de 
los reforzadores para la misma alternativa de respuesta, y modelos aditivos 
predicen que los efectos de los castigadores se sumen a los de los reforza-
dores obtenidos por la otra alternativa de respuesta. Estos dos modelos fu-
eron incorporados en el modelo de Davison y Tustin (1978) de la ejecución 
de detección de señales. Investigación preliminar con sujetos humanos en 
un procedimiento de detección de señales provee apoyo a una versión de 
castigo aditivo del modelo de Davison y Tustin.

Palabras clave: detección de señales, castigo, sesgo de respuesta, hu-
mano.

Many situations require organisms to make choices involving the detection or 
identification of stimuli. For example, a bird must decide whether a butterfly is 
toxic or safe to eat, a motorist must decide whether it is safe to pass the car 
ahead, or a pathologist must decide whether a sample of cells are cancerous 
or not. From a behavioral analysis perspective, detection is not only an issue 
of stimulus discriminability; the consequences of the choices are also impor-
tant. The bird gets sick from eating the toxic butterfly, the motorist crashes, 
or the pathologist is dismissed or reprimanded. In these examples, both the 
negative consequences arising from errors and the positive consequences 
arising from correct choices should influence the choices that are made. 

Research in behavioral detection has focused almost exclusively on the 
effects of positive outcomes for correct responses. Studies have investigated 
the effects of varying reinforcer rate, reinforcer duration, and reinforcer delay 
on signal-detection performance (see Davison & McCarthy, 1988; Davison 
& Nevin, 1999). The research has, however, ignored the effects of negative 
outcomes for errors. Davison and McCarthy (1980) even studied the effects 
of reinforcement for errors, but not the effects of punishment.

The matrix in Figure 1 shows the response outcomes in a behavioral de-
tection procedure. In a two-alternative signal-detection task, there are two dif-
ferent stimuli (S1 and S2) and two corresponding response options (B1 and B2). 
Thus, there are four possible response outcomes. Correct responses are B1 
following the presentation of S1 (B11), and B2 following S2 presentations (B22). 
Often, the subject receives reinforcement (either intermittent or continuous) 
for these responses (R11 and R22, Figure 1). The responses, B12 and B21 are 
the incorrect responses following S1 and S2, respectively. Behavioral detec-
tion experiments typically arrange no consequences for errors, but they could 
be punished. In Figure 1, P12 and P21 denote the number of punishers obtained 
for B12 and B21 responses, respectively. 
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There are a number of reasons why little research has considered the effects 
of punishment for errors. A recent article by Critchfield, Paletz, MacAleese, 
and Newland (2003) provided a good summary of these issues, such as dif-
ficulties with equating reinforcer and punisher values, and analytical problems 
associated with extending current models of choice to incorporate punish-
ment. There is a further practical consideration that complicates modelling 
punishment effects in choice procedures; punishment is typically arranged 
against a backdrop of reinforcement so that responding occurs. Any punish-
ment model, therefore, must incorporate the combined effects of both rein-
forcement and punishment on choice behavior.

There are two main competing models of choice that incorporate punish-
ment and reinforcement effects: an additive (also termed competitive-sup-
pression, or indirect-suppression) model (e.g., Deluty, 1976), and a subtrac-
tive (or direct-suppression) model (e.g., de Villiers, 1980; Farley, 1980; Farley 
& Fantino, 1978). Additive models of punishment predict that the effects of 
punishers on one response alternative add to the effects of the reinforcers for 
the other alternative. Subtractive models predict that the effects of punishers 
for a response directly subtract from the effects of reinforcement for the same 
response.

Critchfield et al. (2003) reviewed the limited research on these two mod-
els. Research with non-human subjects has provided some support for both 
models. However, some studies made no direct comparisons between the 
differing predictions of the two models (e.g., Deluty, 1976; Deluty & Church, 

Figure 1. The four possible response outcomes and their corresponding 
reinforcement and punishment terms in a two-alternative signal-detection 
task. See text for details.
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1978; Farley & Fantino, 1978), or arranged conditions that did not test the two 
models effectively (e.g., Deluty, 1976). There are only two published studies 
that have made direct comparisons between additive and subtractive model 
predictions (de Villiers, 1980; Farley, 1980). In both these studies, rates of 
reinforcement were unequal while rates of punishment were equal across 
two response alternatives in concurrent schedules. With this arrangement, 
an additive model of punishment predicts reduced preference for the richer 
reinforcement schedule, while a subtractive model predicts an increased pref-
erence towards the richer reinforcement schedule. Both studies reported an 
increased preference for the alternative associated with the richer reinforce-
ment schedule, that is, support for a subtractive model. Overall, research from 
non-humans provides better evidence for a subtractive instead of an additive 
model of punishment.

There is even less research on the effects of punishment on human 
choice behavior (e.g., Bradshaw, Szabadi, & Bevan, 1979; Gray, Stafford, & 
Tallman, 1991). Critchfield et al. (2003) published the only human study that 
directly compared the predictions of additive and subtractive models. They 
used a two-alternative concurrent schedule where computer-mouse clicking 
by undergraduate students was reinforced by monetary gain and punished by 
monetary loss. Critchfield et al. also found that a subtractive model of punish-
ment described their individual subject data better than an additive model.

To date, there is no published research on signal-detection models of 
punishment. In order to derive signal-detection models of punishment, we 
must first look at behavioral models of detection performance. Davison and 
Tustin (1978) developed the most widely-used behavioral detection model. 
Their model was based on the generalised matching law (GML; Baum, 1974). 
The GML can be written

					   
(1)

where B1 and B2 are as defined above, and R1 and R2 denote the number 
of obtained reinforcers for B1 and B2 responses respectively. The parameter 
a measures the sensitivity of behavior to the ratio of reinforcers; that is, the 
extent to which changes in reinforcer ratios (R1/R2) change the distribution of 
responses (B1/B2). The parameter c (or log c) measures inherent bias; that is, 
a constant preference the subject might display for one alternative, indepen-
dent of changes to the reinforcer ratio. Davison and Tustin (1978) proposed 
that when two stimuli in a detection task are indiscriminable, then the distribu-
tion of responses across the two alternatives should depend only on the rela-
tive reinforcer ratio for the two alternatives (i.e., Equation 1). However, as S1 
and S2 become more distinguishable, then the subject becomes more biased 
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where all notation is as above. Equation 5 predicts that response bias, log b, 
should follow the generalised matching law (Equation 1).

From Equations 2 and 3, it is straightforward to incorporate the effects 
of punishment into Davison and Tustin’s (1978) GML-based model of signal-
detection performance. An additive punishment model of signal-detection per-
formance following S1 trials can be written as

(6)
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and following S2 trials as

(7)
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where all notation is as above. Equations 9, 10, and 11 are undefined if qP21 
≥ R11 or qP12 ≥ R22.

Like the additive and subtractive free-operant models of punishment (de 
Villiers, 1980; Farley, 1980), the additive and subtractive signal-detection 
models also predict different effects of punishment. Figure 2 illustrates this 
difference. The solid straight line shows the predicted changes in response 
bias when no punishment is arranged, and the reinforcer ratios (B11/B22) were 
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2221

1211 ,  (8) 

where all notation is as above, and q is a scaling factor measuring the relative potency 

of the punisher compared to a reinforcer. For example, if q = .5, then a punisher 

would be half as effective as a reinforcer.   

Applying a subtractive model of punishment to the Davison and Tustin (1978) 

model yields an equation following S1 trials, 

dc
qPR
qPRa

B
B loglogloglog

1222

2111

12

11  ,  (9) 

and following S2 trials, 
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at .9, and inherent bias, c, was set at 1. The dashed line and the dotted line 
show the predictions of the additive model (Equation 8) and subtractive model 
(Equation 11) when a constant low rate (20 punishers per hour) of punishment 
is superimposed on the reinforcer ratios. The subtractive model predicts a 
steeper function (i.e., response bias becomes more extreme), and the ad-
ditive model predicts a shallower function (i.e., response bias becomes less 
extreme) than the no-punishment condition.

Figure 2. Predictions made by the Davison and Tustin (1978) model of 
signal detection behaviour. See text for details.

We have recently conducted some preliminary research using a discrete-
trial signal-detection procedure with reinforcement for correct responses and 
punishment for errors. In this procedure, undergraduate students at the Uni-
versity of Otago judged whether there were more blue or yellow objects in var-
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ious 10 x 10 arrays on a computer screen. We selected an unusual system of 
reinforcers and punishers. We had noticed that undergraduate students were 
eager to end our experimental sessions, therefore we made release from the 
session contingent upon performance. Participants were required to obtain a 
certain number of points (reinforcers) for correct responses before ending the 
experimental session. However, incorrect responses sometimes led to point 
deductions (punishers), thus increasing session time. A “thermometer bar” 
presented on the right-hand side of the computer screen displayed the net 
number of points obtained. When the thermometer bar reached the top, the 
experimental session ended.

The experiment used a between-groups design. For Group A, the rein-
forcer distribution for correct responses was varied in four different conditions 
across the two response alternatives (5:1, 2:1, 1:2, 5:1), and the arranged 
overall reinforcer rate was six reinforcers per minute. There was no punish-
ment for errors. Group A determined whether the reinforcers affected re-
sponse bias. For Group B, the distribution of the punishers was varied across 
the two alternatives (5:1, 2:1, 1:2, 5:1), and equal numbers of reinforcers were 
arranged on each alternative. Group B determined whether the punishers 
affected response bias. Group C received the same four reinforcer distribu-
tions used in Group A, but an equal number of punishers for errors was ar-
ranged across the response alternatives. Thus, the essential comparison was 
between Groups A and C, where the same reinforcer distributions were ar-
ranged, but Group C also included a low, equal rate of punishment.

Figure 3 plots the results from the three groups with response bias calcu-
lated using Equation 5. The positive regression slope for Group A (a = 0.36) 
shows that the participants were sensitive to the distribution of reinforcers 
across the two alternatives for the four conditions, and this change in bias was 
significant, F(1,5) = 13.18, p < .05. The negative regression slope for Group 
B (a = -0.20) shows that participants were sensitive to the distribution of pun-
ishers across the four conditions, and this effect was also significant, F(1,5) 
= 4.387, p < .05. Group C, like Group A, showed a positive regression slope, 
but it was shallower than that obtained in Group A (a = 0.15). However, a t-test 
on the slopes of the functions from the individual subject data across groups 
approached, but did not reach, significance, t(10) = 2.115, p =.061. The indi-
vidual subject data showed that was largely attributable to one participant’s 
performance in one condition. 

These preliminary results provide support for an additive model rather than 
a subtractive model of punishment for signal-detection procedures (Figure 2). 
This finding was unexpected, because it differs from Critchfield et al.’s (2003) 
study which found support for a subtractive model using human participants, 
and differs from previous non-human research which also provides stronger 
evidence for a subtractive model than an additive model of punishment. There 
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are a number of reasons why the findings from this preliminary study might 
differ from those found with concurrent schedules. First, our preliminary study 
used a between-groups comparison with a limited number of participants. Ob-
viously, this result needs replication, and it needs extension to within-subject 
comparisons. We are currently conducting such research. 

Second, the type of reinforcers and punishers used in our study differ 
from those that might be used in non-human animal research (e.g., food and 
electric shock). Points obtained lead to escape from the experiment and per-
haps can be viewed as conditioned negative reinforcers. Similarly, instances 
of point loss can be seen as conditioned negative punishers. It is possible 
that negative reinforcers and punishers differ in their effects when compared 
to positive reinforcers and punishers. We are currently conducting non-human 
animal research using more traditional reinforcers and punishers to address 
this issue.

Third, and more important, reinforcement (and, so too punishment) might 
not have identical properties on free-operant concurrent-schedule and dis-
crete-trial detection procedures. For example, free-operant concurrent-sched-
ule research (e.g, Davison & Baum, 2002; Davison & Baum, 2003; Landon, 
Davison, & Elliffe, 2003) has found that reinforcement creates “preference 
pulses” for the response alternative that was just reinforced. Preference puls-
es have also been found in signal-detection procedures (Alsop & Rowley, 
1996), but they differed from those found in concurrent schedules; reinforcers 
were followed by a brief increase in response bias for the alternative with the 

Figure 3. Fitted least-squares regression lines and error bars of subject 
data for response bias (log b) over changes in log Reinforcer Ratio for Groups 
A and C, and changes in log Punisher Ratio for Group B.
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higher rate of reinforcement, regardless of which alternative had just been 
reinforced. It may be the case that subtractive punishment models may better 
model performance in simple concurrent-schedule procedures, and additive 
punishment models better model performance in signal-detection procedures. 
Further research is required to establish whether there are underlying differ-
ences between these two procedure types.

Here we have examined only the predictions made by additive and 
subtractive punishment versions of the Davison and Tustin (1978) model. 
Other competing models of detection might accommodate the effects of 
punishment more readily. An obvious alternative is Alsop and Davison’s 
(1991) behavioural model of signal detection. Interestingly, although simple 
extensions of Alsop and Davison’s model accommodate additive punishment 
effects, the model does not extend to subtractive punishment effects so 
readily. In fact, the simplest subtractive version of the Alsop and Davison 
model becomes incalculable at quite modest rates of punishment. We are 
currently working on different mathematical versions of this model.

Regardless of whether or not there are differences in the effects of 
punishment between free-operant concurrent-schedule and discrete-trial 
signal-detection procedures, signal detection is a procedure well suited 
for studying punishment effects in non-human animals, and in particular, 
human participants. The arrangements of rewards for correct responses and 
punishers for errors parallel many everyday situations, so the procedures are 
easily explained to, and readily accepted by, human participants. As a method 
for studying general human choice behavior, signal-detection procedures may 
offer a worthwhile complement to free-operant tasks. 
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