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RESUMEN

La acreción sobre una proto-estrella de neutrones en las horas que siguen al co-
lapso del núcleo de la estrella masiva que le dio origen puede afectar sus propiedades
observables. Este fenómeno se da en el régimen denominado hipercŕıtico (Cheva-
lier 1989), donde el enfriamiento por neutrinos es crucial para la evolución ter-
modinámica. En este trabajo presentamos un estudio en este contexto en una
dimensión con simetŕıa esférica y llevamos a cabo simulaciones numéricas en dos
dimensiones dentro de una columna de acreción sobre una estrella de neutrones.
Consideramos procesos microf́ısicos detallados, enfriamiento por neutrinos y la pres-
encia de campos magnéticos en la aproximación de magnetohidrodinámica ideal.
Comparamos nuestros resultados numéricos con las soluciones anaĺıticas e inves-
tigamos cómo las soluciones, tanto hidrodinámicas como magnetohidrodinámicas,
difieren de éstas. Iniciamos también una exploración de cómo este proceso puede
afectar la aparición del remanente como un pulsar t́ıpico en radio.

ABSTRACT

The properties of a new-born neutron star, produced in a core-collapse su-
pernova, can be strongly affected by the possible late fallback which occurs several
hours after the explosion. This accretion occurs in the regime dominated by neu-
trino cooling, explored initially in this context by Chevalier (1989). Here we revisit
this approach in a 1D spherically symmetric model and carry out numerical sim-
ulations in 2D in an accretion column onto a neutron star, considering detailed
microphysics, neutrino cooling and the presence of magnetic fields in ideal MHD.
We compare our numerical results with the analytic solutions and explore how the
purely hydrodynamical as well as the MHD solutions differ from them, and begin
to explore how this may affect the appearance of the remnant as a typical radio
pulsar.

Key Words: accretion, accretion disks — hydrodynamics — magnetic fields — stars:
neutron — supernovae: individual (SN1987A)

1. INTRODUCTION
The neutrino signal (Hirata et al. 1987; Bionta

et al. 1987) detected from the supernova SN1987A
clearly demonstrated the birth of a neutron star
(Burrows & Lattimer 1986). Identification of
the progenitor as the blue supergiant Sanduleak
−69◦202a (Gilmozzi et al. 1987) and modeling of the
early light curve (Hillebrandt et al. 1987; Shigeyama
et al. 1987) proved that the supernova resulted from
the core-collapse of a massive, ∼ 20 M�, star. How-

ever, to date, there is no evidence for the presence
of a pulsar, or even a quiet neutron star, in the rem-
nant (see, e.g., discussion in Haberl et al. 2006 and
Shternin & Yakovlev 2008). Several solutions to this
dilemma have been proposed as, e.g., the delayed
collapse of the neutron star into a black-hole (Ellis,
Lattimer, & Prakash 1996; Brown & Bethe 1994) or
a delayed turn-on of the pulsar (Michel 1994; Mus-
limov & Page 1995). The latter case is just an ex-
treme case of the more mundane possibility that the
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Fig. 1. Schematic evolution of a collapsing stellar core. A, the Chandrasekhar-mass iron core collapses; B, upon formation
of a proto-neutron star, the equation of state stiffens and produces a bounce, launching an outwardly propagating shock;
C, a reverse shock is formed at the He-H interface in the stellar envelope, moving back towards the neutron star; D, an
accretion shock is established, interior to which an atmosphere close to hydrostatic equilibrium in the neutrino-cooled
regime deposits mass and energy onto the neutron star in the hours following the explosion.

neutron star is weakly magnetized and/or slowly ro-
tating, resulting in a spin-down energy that is low
enough so as to be undetectable.

In recent years, several measurements of pul-
sar masses point toward large values approaching,
or even exceeding, 2 M� (see, e.g., Freire 2008)
which would strongly disfavor the black-hole expla-
nation. On the other side, timing of radio quiet
compact stars in young supernova remnants, usually
dubbed CCOs (“Central Compact Objects”, Pavlov
et al. 2002) recently unveiled at least three case of
weakly magnetized young neutron stars (Gotthelf
& Halpern 2008): PSR J0821-4300 (in the SNR
Puppis A) with a rotational period P = 112 ms,
an upper limit on its spin-down power Ė < 2.3 ×
1035 erg s−1, and a surface dipolar magnetic field
strength Bdip < 9.8 × 1011 G (Gotthelf & Halpern
2009); PSR 1E1207.4-5209 (in the SNR PKS 1209-
51/52) with P = 424 ms, Ė < 1.3 × 1032 erg s−1,
and Bdip < 3.3× 1011 G (Gotthelf & Halpern 2007),
and finally PSR J1852+0040 (in the SNR Kes 79)

with P = 424 ms, and measurements of Ė = 3.0 ×
1032 erg s−1, and Bdip = 3.1 × 1010 G (Halpern &
Gotthelf 2010). The last two of these hence have an
energy output well below the 0.2–10.0 keV luminos-
ity of the SN 1987A remnant, L < 5.7×1034 erg s−1

(Haberl et al. 2006). If the neutron star produced
by SN 1987A has similar characteristics it would
presently be undetectable.

In the present paper we consider the scenario in
which the initial magnetic field of the new-born neu-
tron star is strongly modified by a phase of late, and
intense, accretion, occurring a few hours after the
initial explosion (Geppert, Page, & Zannias 1999).
When a massive star explodes as a supernova, fol-
lowing the core-collapse scenario (Woosley & Janka
2005; Mezzacappa 2005; Janka et al. 2007), a large
fraction of its mass expands freely and interacts with
the interstellar medium. However, the central com-
pact remnant also interacts with the inner envelope
through its gravitational field. In Type II SNe (see
Figure 1), the initial core-collapse (Panel A) pro-
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duces a proto-neutron star when the equation of
state stiffens close to nuclear density. A high-velocity
(104 km s−1) expansive shock then starts moving
outward (Panel B). Flow lines bifurcate and some
part of the matter falls back onto the central rem-
nant. The rest is unbound and ends up being ejected
in the explosion. This scenario produces a low den-
sity region in near free fall between the surface of the
compact object and the extended atmosphere in near
hydrostatic equilibrium that has formed. If the pro-
genitor star had a low density envelope surrounding
the He core a reverse shock (Panel C) decelerates the
matter and causes a late fallback onto the compact
object, depositing great amounts of matter onto the
surface of the new-born neutron star in the hours fol-
lowing the explosion (Panel D). Following the ideas
of Blondin (1986), Chevalier (1989), Houck & Cheva-
lier (1991), and Brown & Weingartner (1994) about
the accretion of matter onto compact objects, it is
possible to develop an analytical model of accretion
following core-collapse, and particularly in the case
of SN1987A. One of the salient features of this analy-
sis is that the gas, being quite dense, is unable to cool
by photon emission, and the mass accretion rates are
highly super-Eddington in that sense. However, at
sufficiently high temperatures, cooling through neu-
trinos sets in, mostly through pair annihilation and
pair capture onto free nucleons, and given their much
lower interaction cross section with matter, they are
able to remove enough energy from the flow for ac-
cretion to take place. This regime is usually termed
“hypercritical” accretion, is common in the inner col-
lapsing stellar cores and is likely to drive the central
engines of Gamma Ray Bursts (Lee & Ramirez-Ruiz
2007). With this model it is formally possible to ob-
tain the radial position of the shock as a function
of the mass accretion rate from fallback, assuming
steady state in spherical symmetry, as well as the
structure of the envelope.

Chevalier (1989) and Houck & Chevalier (1991)
computed such solutions in the context of SN1987A.
Here we wish to explore the behavior of the flow
under more general conditions, and we present so-
lutions for an accretion column in two dimensions,
which we compare with the analytical scalings. Neu-
trino cooling is a crucial ingredient in the relevant
density and temperature regimes, and we consider
it along with a detailed equation of state. In ad-
dition, and more importantly, we begin to explore
the effects of the magnetic field on the accumula-
tion of matter onto the neutron star surface. This
is only possible through 2D simulations of the kind
shown here, and we make a comparative analysis be-

tween the analytical and numerical approaches to
consider the submergence of the magnetic field in
the crust of the neutron star and the piling up of
matter on its surface. Previously, Muslimov & Page
(1995) and Geppert et al. (1999) considered in one-
dimensional calculations how such accretion might
delay the switch-on of a pulsar following its forma-
tion, by computing the ohmic diffusion time of the
magnetic field through the accreted matter. Fryer,
Benz, & Herant (1996) studied the two-dimensional
accretion dynamics onto new-born neutron stars in
the neutrino cooled regime, finding that in some
cases, neutrino-driven convection can significantly
modify the simple one-dimensional steady state so-
lution.

Here we report on preliminary, two-dimensional
numerical calculations which aim to determine if hy-
percritical, neutrino-cooled accretion can submerge
the magnetic field into the crust of the neutron star,
and if it plays an important role in the dynamics in
this regime. In § 2 we develop the analytical model of
the hypercritical accretion process and calculate the
structure of the envelope for a two dimensional ac-
cretion column. We build a numerical model, based
on these analytical consideration, in § 3. In § 4,
we show numerical results for various configurations
including magnetic fields at several accretion rates
and present a comparative analysis between the nu-
merical and analytical solutions for the scenario of
SN1987A. Finally, in § 5 we present some prelimi-
nary conclusions.

2. ANALYTICAL MODELS

As a benchmark against which to compare our
numerical simulations, we summarize below the ba-
sic results of an analytical model, based on the one
developed by Chevalier (1989), and adapt them to
the case of an accretion column. The essential as-
sumptions of the model are that the neutron star is
at rest within the expanding medium at infinity and
rotation is neglected. For this analytical approach,
we also neglect the effect of a possible magnetic field.
Matter is described by a polytropic equation of state,
P = Kργ with an index γ = 4/3, and is assumed to
evolve adiabatically, except at the shock interfaces
and close to the neutron star surface where neutrino
emission (through e± pair annihilation) assures that
the accretion energy is properly removed from the
system.

2.1. The Initial Late-Accretion Rate in SN1987A

Spherically symmetric accretion by a compact
star in an initially static, infinite, background was
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described by Bondi (1952) (see also, e.g., Shapiro
& Teukolsky 1983). The mass accretion rate Ṁ is
obtained from the density and sound velocity at in-
finity, ρ∞ and c∞ respectively, as

ṀB = 4πλ

(
GM

c2∞

)2

ρ∞c∞ , (1)

where the numerical constant λ = 1/
√

2 � 0.707 for
the case of an ideal gas with adiabatic index γ = 4/3.
In our case the medium is not strictly initially at rest
but has been set into expansion by the supernova
shock wave. At early times the core is in homologous
expansion, with a velocity v = r/t and density ρ such
that ρt3 = ρat

3
a is constant, in terms of a reference

density ρa at time ta. As long as the time t is smaller
than the Bondi accretion time scale τB � GM/c3

∞,
one can still estimate Ṁ with equation (1) by allow-
ing ρ∞ and c∞ to be time dependent, and obtain
(Chevalier 1989)

ṀB = 5.77
(GM)2

K3/2
(ρat

3
a)

1/2 t−3/2 . (2)

According to Woosley (1988) and Shigeyama,
Nomoto, & Hashimoto (1988), ρat

3
a ∼ 109 g cm−3 s3.

Now the density and sound velocity at infinity have
been estimated, for SN1987A, by Woosley (1988)
and Bethe & Pizzochero (1990) as being of the order
of

ρ∞ =
2.5 M�

(4/3)π(vft)3
� 1.78× 10−13

(
t

yr

)−3

g cm−3,

(3)

c2
∞ =

γkBT∞
μmH

� 1.24× 1012

(
t

yr

)− 3
4

cm2 s−2, (4)

where vf � 600 kms−1 is the final expansion ve-
locity and T∞ � 70 keV (4 × 109 cm/vft)3/4 for a
radiation dominated shock as in a supernova like
SN1987A. Bethe & Pizzochero (1990) calculated that
the temperature for a shock radius of 4 × 109 cm is
Tsh � 70 keV. The mass of the expanding CO core
is ∼ 4 M�, but here we considered only 2.5 M� be-
cause 1.5 M� were taken to make the compact object
at the center of the supernova. We hence have

Ṁ � 2.23 × 1022

(
t

yr

)− 15
8

g s−1

� 3.5 × 10−4

(
t

yr

)− 15
8

M� yr−1 . (5)

Woosley (1988) calculated the time that the reverse
shock takes to return to the surface of the neutron

star for SN1987A as t � 7 × 103 s, giving us, for
the accretion rate in SN1987A in the hypercritical
regime

Ṁ � 1.57 × 1029 g s−1 = 2500 M� yr−1 . (6)

This accretion rate exceeds by an order of magni-
tude the value calculated by Chevalier (1989), Ṁ =
2.2× 1028 g s−1 = 340 M� yr−1 because of different
assumed values at infinity. Now, the Eddington mass
accretion rate when considering photon radiation is
ṀEdd = 3.77 × 1018 g s−1, if one considers electron
scattering in pure ionized Hydrogen as the source
of opacity, kes = 0.4 cm2 g−1. When Ṁ � ṀEdd

the flow is what we described above as Hypercriti-
cal Flow, studied by Blondin (1986). For the case of
SN1987A, we have

Ṁ

ṀEdd

� 109 − 1010 , (7)

for the two values given above, placing such flows
clearly in the hypercritical, neutrino cooled, regime.
Henceforth we adopt as our fiducial accretion rate
the value

Ṁ0 � 2.2 × 1028 g s−1 = 340 M� yr−1 . (8)

2.2. The Envelope and the Shock Radius: Spherical
Case

When the reverse shock bounces against the sur-
face of the neutron star, a third expansive shock
is formed, which propagates through the infalling
matter. Thus, eventually an atmosphere in quasi-
hydrostatic equilibrium is formed around the com-
pact object (see Panel D in Figure 1), whose general
structure can be calculated analytically under some
simplifying assumptions.

Following the formulation of Chevalier (1989),
the structure of the envelope is calculated and an ex-
pression for the pressure at the surface of the neutron
star, Pns, in terms of Ṁ and the shock radius, rsh, is
derived. Cooling by neutrinos close to the neutron
star surface, which depends on Pns, is introduced and
this ultimately determines the shock radius solely as
a function of the accretion rate. From the condition
of hydrostatic equilibrium, dP/dr = −ρGM/r2, we
obtain the integrated values for the pressure, density
and velocity as a funtion of the distance from the
neutron star surface. This is possible because neu-
trino cooling is only important near the surface of the
neutron star and we can consider that the post-shock
flow is adiabatic over the greater part of the volume.
In addition, the flow is highly subsonic except close
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the shock. With this we obtain, P ∝ r−γ/(γ−1) ∝
r−4, ρ ∝ r−1/(γ−1) ∝ r−3, v ∝ r(3−2γ)/(γ−1) ∝ r,
where we have used γ = 4/3. These results also
are valid in the shock and the envelope structure in
hydrostatic equilibrium is given by

P = Psh

(
r

rsh

)−4

, (9)

ρ = ρsh

(
r

rsh

)−3

, (10)

v = vsh

(
r

rsh

)
, (11)

where Psh, ρsh, vsh and rsh are the values at the
shock. These values can be obtained from the jump
conditions when Psh � P0, where P0 and ρ0 the
pre-shock pressure and density. Under these con-
siderations we obtain Psh = (7/8)ρ0v

2
0 , ρsh = 7ρ0

and vsh = −(1/7)v0. The pre-shock velocity is that
of free-fall, v0 =

√
2GM/rsh, and the density is

ρ0 = Ṁ/4πr2
shv0. From equation (8) we obtain the

pressure at the surface, Pns = 1.36 × 10−12Ṁr
3/2
sh ,

with M ∼ 1.44 M� and rns ∼ 106 cm. On the other
hand, the energy loss by neutrinos (only pair pro-
duction) by unit volume can be estimated as (Dicus
1972),

ε̇n = 1.83 × 10−34P 2.25 erg cm−3 s−1 . (12)

In this case, we consider that e± pairs also contribute
to the pressure. Now, this cooling is operative only
in a small volume close to the neutron star surface,
∼ πr3

ns since it is a sensitive function of tempera-
ture. So, from energy conservation, the shock radius
is obtained as,

rsh � 7.58 × 108

(
Ṁ

M� yr−1

)− 10
27

cm . (13)

With this we have the structure of the envelope
and the shock radius as a function of the accretion
rate. For the case of SN1987A with our fiducial ac-
cretion rate Ṁ = Ṁ0 = 340 M� yr−1, the shock
radius is rsh � 8.77 × 107 cm.

2.3. The Envelope and the Shock Radius: The
Accretion Column

If we consider a small rectangular accretion col-
umn of area Acol onto a fraction of the neutron star
surface, with area A = 4πR2

NS, we can take it to be a
plane-parallel surface (see Figure 2). In this case, the
spherical mass accretion rate must be scaled to its
value in the column. Since in the spherical case the

o

R

Rin

out

O

θo

z

φ

Fig. 2. Schematic geometry of the accretion column onto
the neutron star surface.

area depends on the distance to the neutron star,
while for the case of an accretion column the area
is constant, the structure of the envelope and the
shock radius are modified. Note that this modifica-
tion causes the mass accretion rate per unit area to
be independent of height in the domain. Also, since
it is smaller than in the spherical case, the analytical
estimate of the shock radius decreases significantly,
and is now given by

ysh � 7.61 × 106

(
Ṁ/A

M� yr−1/Acol

)−0.16

cm , (14)

where y measures the height above the neutron star
surface. With these considerations and taking Acol =
(3 × 105)2 cm2, the shock radius for the fiducial ac-
cretion rate, equation (8), is ysh = 6.92×106 cm, and
the structure of the envelope is given by

P = Psh

(
y

ysh

)−4

, (15)

ρ = ρsh

(
y

ysh

)−3

, (16)

v = vsh

(
y

ysh

)3

. (17)
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The velocity profile is different for the accretion
column as well because the column area is constant
as a function of height above the neutron star. The
conditions in the shock in the SN1987A scenario are
thus

v0 =

√
2GM

ysh
� 7.53 × 109 cm s−1 , (18)

ρ0 =
Ṁ

v0 × A
� 2.31 × 105 g cm−3 , (19)

ρsh = 7ρ0 � 1.62 × 106 g cm−3 , (20)

vsh = −1
7
v0 � −1.07 × 109 cm s−1 , (21)

Psh =
7
8
ρ0v

2
0 � 1.14 × 1025 dyn cm−2 . (22)

Now we can build a numerical model with
more refined physics to perform 2D hydrodynam-
ics (HD) and magnetohydrodynamics (MHD) simu-
lations, which we can compare with the 1D analytical
results.

3. NUMERICAL APPROACH
For the work shown in this paper we used the nu-

merical code AMR FLASH2.5 (Fryxell et al. 2000) to
perform the 2D simulations. FLASH1 is a modular,
portable, highly scalable, adaptive-mesh simulation
code for astrophysical hydrodynamics problems. It
was originally developed at the DOE ASCI Alliances
Center for Astrophysical Thermonuclear Flashes at
the University of Chicago for the purpose of simulat-
ing Type Ia supernovae, novae, and X-ray bursts. It
has since evolved to handle more general astrophys-
ical problems, including those involving collisionless
particle dynamics. FLASH is freely available from
the ASCI Flash Center. This code is designed to
allow users to configure initial and boundary condi-
tions, change algorithms, and add new physics mod-
ules with minimal effort. It uses the PARAMESH li-
brary to manage a block-structured adaptative grid,
placing resolution elements where they are needed
most.

3.1. The Numerical Method
FLASH2.5 provides two main types of modules:

Physics and Infrastructure Modules. In our model
we used the hydro-mhd, eos-helmholtz, gravity and
neutrino-cooling custom modules.

The FLASH code solves the the equations of a
magnetized fluid (ideal or non-ideal), described by

∂ρ

∂t
+ ∇ · (ρv) = 0 , (23)

1http://flash.uchicago.edu/website/home/

∂ρv
∂t

+ ∇ · (ρvv − BB) + ∇P∗ = ρg + ∇ · τ , (24)

∂ρE

∂t
+ ∇ · [v (ρE + P∗) − B (v · B)]

= ρv · g+O(τ, η) , (25)

∇· (v · τ+σ∇T ) + ∇ · (B × (η∇× B))
= O(τ, η) , (26)

∂B
dt

+ ∇ · (vB − Bv) = −∇× (η∇× B) , (27)

where

P∗ = P +
B2

2
, (28)

E =
1
2
v2 + ε +

B2

2ρ
, (29)

τ = μ

[
(∇v) + (∇v)T − 2

3
(∇v)

]
. (30)

Here P∗, E and τ are the total pressure, total spe-
cific energy and stress tensor, respectively, and the
remaining symbols have their usual meaning. Units
in these equations are such that no 4π and μ0 factors
appear.

We have simplified the above set of equations by
restricting ourselves to the ideal hydro and MHD
cases. Setting the thermal conductivity, σ, and elec-
trical resistivity, η, to zero is justified by the fact
that time scales for heat and magnetic field diffusion
are many orders of magnitude larger than our sim-
ulation times. The inviscid (μ = 0) approximation,
i.e., neglect of momentum diffusion, is acceptable be-
cause we have not considered rotation in our models.
Note that when B = 0, the Euler equations are then
obtained.

A particular complication associated with solv-
ing the MHD equations numerically lies in the
solenoidality of the magnetic field. The non-
existence of magnetic monopoles, ∇ · B = 0 is dif-
ficult to satisfy in discrete computations. Being only
an initial condition of the MHD equations, it enters
the equations indirectly and is not, therefore, guar-
anteed to be generally satisfied unless special algo-
rithmic provisions are made. FLASH2.5 uses a sim-
ple yet very effective method to destroy the magnetic
monopoles on the scale on which they are generated.
In this method, a diffusive operator proportional to
∇∇ · B is added to the induction equation, so that
the equations become

∂B
dt

+ ∇ · (vB − Bv) = −∇× (η∇× B)

−v∇ ·B+ηa∇∇ ·B , (31)
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with the artificial diffusion coefficient ηa chosen to
match that of grid numerical diffusion. In the
FLASH code, ηa = (λ/2)(1/Δx + 1/Δy + 1/Δz)−1,
in 3D where λ is the largest characteristic speed in
the flow. Since the grid magnetic diffusion Reynolds
number is always on the order of unity, this opera-
tor locally destroys magnetic monopoles at the rate
which they are created. All our simulations are in
Cartesian coordinates: in the presence of a magnetic
field polar/spherical coordinates are very trouble-
some and, presently, the MHD version of FLASH
does not support them.

3.2. The Physics Ingredients

In the analytical approach an ideal gas equation
of state has been used. This allows much simplifi-
cation in the structure of the envelope and, in addi-
tion, the flow can be managed like an adiabatic fluid
with γ = 4/3. The gas is dominated by radiation,
which is trapped within the flow. Also, the neutrino
losses depend on a high power of the pressure, but
are only important at the base of the envelope. Nev-
ertheless, to account for the thermodynamics more
accurately and for the consequent piling up of mat-
ter on the star, it is advisable and necessary to work
with a more complete and realistic equation of state.
The Helmholtz EOS provided with the FLASH2.5
distribution contains more physics and is appropri-
ate for addressing astrophysical phenomena in which
electrons and positrons may be relativistic and/or
degenerate and in which radiation may significantly
contribute to the thermodynamic state. This EOS
thus includes contributions from black-body radia-
tion, completely ionized ideal nuclei, and free elec-
trons and positrons. The pressure and internal en-
ergy are calculated as the sum over the components,

Ptot = Prad + Pion + Pele + Ppos + Pcoul , (32)
εtot = εrad + εion + εele + εpos + εcoul . (33)

Here the subscripts “rad” , “ion”, “ele”, “pos” and
“coul” represent the contribution from radiation,
nuclei, electrons, positrons, and Coulomb correc-
tions, respectively. The radiation portion assumes a
blackbody in local thermodynamic equilibrium, the
ion portion (nuclei) is treated as an ideal gas with
γ = 5/3, and the electrons and positrons are treated
as a non-interacting Fermi gas of arbitrary degener-
acy and relativity.

Under the physical conditions of interest for the
set of simulations presented here, the gas is dense
enough that the optical depth for photons is τγ � 1,
and they are fully trapped in the flow. Adding the
corresponding term to the pressure as Prad = aT 4/3

is thus entirely appropriate. We note that more re-
cent versions of FLASH (upwards of 3.2) include
modules for radiation transport, making them useful
for a wider range of studies.

The gravity module suplied with FLASH2.5 com-
putes gravitational source terms for the code. These
can take the form of the gravitational potential φ(x)
or the gravitational acceleration,

g(x) = −∇φ(x) . (34)

The gravitational field can be externally imposed or
self-consistently computed from the gas density via
the Poisson equation,

∇2φ(x) = 4πGρ(x) , (35)

where G is Newton’s gravitational constant. In the
latter case, either periodic or isolated boundary con-
ditions can be applied. In our case, we used an exter-
nally applied gravitational field (plane-parallel grav-
itational field), where the acceleration vector is par-
allel to one of the coordinate axes, and its magnitude
drops with distance along that axis as the distance
squared. Its magnitude and direction are indepen-
dent of the other two coordinates.

In the conditions present in both the high den-
sity part of the accretion flow and the underlying en-
velope neutrino emission occurs essentially through
neutral currents processes. The five processes we
included in the models are analogous to standard
photon emission processes where the γ emission is
replaced by a ν − ν pair. They are:
PAIR ANNIHILATION: e− + e+ → ν + ν,
PHOTONEUTRINOS: γ + e± → e± + ν + ν, the
analogous of Compton scattering,
PLASMON DECAY: Γ → ν + ν, where Γ is a plas-
mon,
BREMSSTRAHLUNG: e± + N → e± + N + ν + ν,
where N is a nucleus, and
SYNCHROTRON: e± +B → e± +B+ ν + ν, where
B represents the magnetic field.

For the first four processes we used the calcula-
tions of Itoh et al. (1996) and for the synchrotron
emission we followed Bezchastnov et al. (1997). Pair
annihilation is the dominant process but synchrotron
can make some significant contribution when the
magnetic field becomes strongly compressed. As
noted above, the density in the flow is typically high
enough that photons are trapped, but not neutrinos.
As a rough guide, the optical depth for neutrinos un-
der coherent scattering off free nuclei is τν � 1 when
ρ � 1011 g cm−3, which is several orders of magni-
tude higher than the maximum values studied here.
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Thus neutrino cooling can be implemented simply as
a sink in the energy equation.

3.3. The Initial and Boundary Conditions

We simulated a small 2D accretion column in
Cartesian coordinates anchored onto the surface of
the neutron star, and considered various accretion
rates and magnetic field configurations. This set
of simulations allows us to compare numerically ob-
tained results in the pure hydrodynamical and MHD
case with the proposed analytical approach, as well
as to analyze the reaction of the magnetic field to
the infalling gas. The computational domain covers
0 ≤ x ≤ 3×105 cm, 0 ≤ y ≤ 107 cm. The dimensions
for the column are: Acol = Lx ×Lz = (3× 105)2 cm2

(for the base) and heightcol = Ly = 107 cm for the
height. This height is adequate because it is below
the analytical shock radius value calculated for the
accretion rate of SN1987A. The fluid is initially in
free fall and we set a constant temperature in the gas.
We considered horizontal (Bx = 1012 G, By = 0),
vertical (Bx = 0, By = 1012 G, mimicking accretion
onto the magnetic pole of the neutron star), diago-
nal (Bx = By = 1012 G) and dipolar (Bx = 2μ/y3,
By = 0, representing accretion onto the neutron star
equator) cases, where μ = 5 × 1029 is the dipolar
moment, fixed so that Bx = 1012 G at the neutron
star surface. With these considerations, the initial
conditions in the column for velocity, temperature
and density are:

ρ =
Ṁcol

vff × Acol
, (36)

T = 109 K , (37)

vff =

√
2GM

y
, (38)

B = 1012 G , (39)

where Ṁcol = ṀAcol/A is the scaled accretion rate
in the column making up the domain.

For the vertical boundaries of the accretion col-
umn, x = 0 and x = 3 × 105 cm, parallel to the y-
axis, we implement standard periodic boundary con-
ditions. Thus, any fluid element moving out of the
computational domain on the right (left) boundary
re-enters the domain on the left (right) edge with the
same thermodynamical properties and velocity.

For the top and bottom of the computational do-
main, parallel to the x-axis, we implemented custom
boundary conditions. The gravity vector is directed
along the y-axis, and we want the lower bound-
ary at y = 0 to support the fluid above against

infall, mimicking the hard surface of the neutron
star, and in addition to have the magnetic field an-
chored to it. In order to establish this boundary,
we use “guard”, or “ghost” numerical cells. These
are cells outside the formal computational domain
(e.g., at y ≤ 0 or y ≥ 107) for which we can fix
the hydrodynamical and thermodynamical proper-
ties and which are not evolved along with the rest
of the flow. They are useful precisely to guarantee
boundary conditions of interest, depending on the
setup of the problem. A layer of at least 2 such cells
along the top and bottom of the domain can thus
be used to compute proper gradients at the edge
of the flow (e.g., a pressure or temperature gradi-
ent). In this case, along the bottom edge of the col-
umn, we fix the velocities to be null in all guard
cells, (vx = vy = vz = 0), keeping them at rest,
and copy the density and the pressure of the first
zone of the numerical domain to mimick the the neu-
tron star surface:

(
ρ = ρ(1), P = P (1) + ρv2 + ρgh

)
,

where the label 1 refers to the first cell in the com-
putational domain. The magnetic field is put in this
boundary in such form that it is continuous from
the guard cell to the physical domain, i.e, we an-
chor the magnetic field onto the neutron star surface
and in the rest of the guard cells it is null. The
other thermodynamics variables are calculated from
the equation of state. At the top of the column,
y = 107 cm, we set the velocity to be that of free
fall, vy = −√2GM/y in all the guard cells, and set
the density to fix a constant inflow mass accretion
rate, ρ = Ṁcol/(|vy|×Acol). As in the computational
domain initially, the temperature in the guard cells
is set to T = 109 K (at all times). The remaining
variables are calculated from the equation of state.

4. RESULTS AND DISCUSSION

We now present results obtained from the 2D hy-
drodynamical simulations (HYDRO) as well as for
the MHD case for an accretion column in carte-
sian coordinates, and compare these to the analytical
scalings. We varied the accretion rate and magnetic
field configuration (for the MHD case). The chosen
rates were one, two and three orders of magnitude
above our fiducial rate Ṁ0 = 340 M� yr−1.

4.1. Comparison of the HYDRO and MHD solvers

For the assumed physical parameters of
SN1987A, in 200 ms the system reaches a
quasi-stationary state, whereas for higher rates
of accretion, this drops substantially: 60 ms at
10 Ṁ0, 20 ms at 100 Ṁ0 and 5 ms at 1000 Ṁ0. We
set a level of refinement of 4, with 2 blocks along the
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Fig. 3. Color maps of density for cases HYDRO (top)
and MHD 0 (bottom) at t = 5, 10, 20 ms from left to
right. The accretion rate is Ṁ = 100 Ṁ0.

x-axis and 18 along y-axis. This implies an effective
resolution of 128× 1152 zones in the computational
domain.

In Figure 3 we show the density contrast for the
HYDRO and MHD cases with null magnetic field
(MHD 0), for Ṁ = 100 Ṁ0. We choose this accre-
tion rate as being representative since its associated
shock radius is much smaller than that for Ṁ = Ṁ0,
and is therefore easier to visualize. In addition, it is
possible to both do a comparative analysis of solvers
(HYDRO and MHD) and of their response to the im-
posed initial conditions. This comparison allows us
to determine whether the equations are being solved
in both modules to a comparable accuracy. In princi-
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magnitude of velocity and neutrino emissivity, for cases
HYDRO (top) and MHD 0 (bottom) at t = 10 ms. The
accretion rate is Ṁ = 100 Ṁ0.

ple, the MHD module with null magnetic field should
reproduce exactly the results obtained with module
HYDRO. The constrasts of pressure, specific total
energy, velocity and neutrino cooling per unit vol-
ume for all the cases (at t = 10 ms), are shown in
Figure 4. The radial profiles of density, pressure and
velocity for the SN1987A accretion rate are given in
Figure 5.

We note that although the system reaches a
quasi-stationary state in t = 20 ms, there is rem-
nant noise in the radial profile of the velocity due to
the interaction of the matter with the lower bound-
ary condition and to the fact that horizontal mo-
tions are allowed because of the periodic boundary
condition. On the other hand, only the bottom sec-
tion, 4×106 cm, of the entire accretion column, with
height 107 cm is shown, where the most interesting
processes occur. We note that the profiles, while
not identical in all respects, are indeed very simi-
lar, showing that the HYDRO and MHD solvers are
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Fig. 5. Radial profiles of density (top), pressure (middle)
and magnitude of velocity (bottom) at t = 200 ms. The
accretion rate is Ṁ = Ṁ0. The HYDRO (red), MHD 0
(green) and analytical solution (blue) are shown together.
The location of the shock is reproduced with very good
agreement in the two numerical cases with respect to the
analytical solution. In the shocked region, the velocity
is a significantly higher due in part to lateral motions of
the gas. At small radii, the numerical solutions deviate
from the analytical curve, since the assumption of self-
similarity is no longer valid as material piles up near the
star and cooling becomes relevant in the energy balance.

giving essentially the same final state, both in space
and time evolution. There is some convection in the
early stages of the evolution, and Rayleigh-Taylor
instabilities are present, but are quickly damped as
the system approaches the stationary solution. Devi-
ations from this are most evident when one examines
variations in the velocity field.

The location of the shock is reproduced quite
well, to within 5% when compared to the analytical
calculation. Moreover, both solvers place it essen-
tially at the same height, indicating that the quanti-
tative aspects are not affected from one to the other.
Since the code is able to model the bottom of the col-
umn self-consistently within the imposed boundary
condition, the numerical solution deviates from the
self-similar scaling once neutrino cooling becomes
important, and matter starts piling up near the sur-
face.

Hereafter, unless otherwise noted we refer to cal-
culations with Ṁ = Ṁ0. The adiabatic and ra-
diative gradients can be calculated from the simu-
lations, when the system is relaxed. We find ∇ad =
1 − 1/γc � 0.26, ∇rad = (d ln T/d lnP ) � 0.24. In
this case, the value of the adiabatic index γc has been
taken directly from the simulation (γc = 1.35), and
the radiative gradient was calculated by building a
plot of temperature vs. pressure. These gradients
have almost constant values within the envelope, ex-
cept in the region close to the neutron star surface.
Since ∇ad > ∇rad, the system is manifestly stable to
convection. Nevertheless, being so close numerically
is probably indicative of marginal stability. Within
the envelope the flow is fully subsonic, as expected
after passing through the accretion shock front: the
sound speed is cs =

√
γcP/ρ � 6.9 × 109 cm s−1,

and v � 1.24 × 107 cm s−1, giving a Mach number
m = v/cs � 10−3. Therefore, besides confirming
that the HYDRO and MHD solvers give accurate
and consistent results, we are able to study the global
structure of the accretion column in detail and to
compare it with the analytical approach, particularly
in the region where the approximations in the latter
break down.

It is worthy to note the thermodynamical condi-
tions the fluid is in as it accretes towards the proto-
neutron star. The Fermi temperature can be com-
puted from the Fermi energy EF

TF =
EF

kB
=

√
p2
Fc2 + m2

ec
4 − mec

2

kB
� 6.48×1010 K ,

(40)

at the base of the flow, where pF = (3π2ne)1/3h̄ is the
Fermi momentum. The temperature obtained from



©
 C

o
p

yr
ig

ht
 2

01
0:

 In
st

itu
to

 d
e

 A
st

ro
no

m
ía

, U
ni

ve
rs

id
a

d
 N

a
c

io
na

l A
ut

ó
no

m
a

 d
e

 M
é

xi
c

o

HYPERCRITICAL ACCRETION ONTO A MAGNETIZED NS SURFACE 319

46

0
0 50 100 150 200 250

Time (ms)

3

2

N
eu

tr
in

o 
lu

m
in

os
ity

 (
10

   
  e

rg
/s

)

1

Fig. 6. Neutrino luminosity integrated over the compu-
tational domain for the fiducial accretion rate, Ṁ = Ṁ0,
up to t = 200 ms. Note how after an initial transient,
the power output is leveling off as the system reaches a
quasi-stationary state.

the simulation, close to the bottom of the accretion
column in quasi-stationary state is T � 4.54×1010 K,
so T/TF � 0.7. It is thus clear that assuming that
the e± pairs are entirely degenerate is not a proper
approximation, and a full expression such as the one
in the Helmholtz equation of state is required if one
wishes to compute the evolution of the flow accu-
rately. It is also clear that neutrino cooling effec-
tively turns on at a scale height Ly ∼ 2 × 105 cm.
For the simulation with Ṁ = Ṁ0, the integrated
neutrino luminosity, shown in Figure 6, is Lν �
2.51× 1046 erg s−1, close to the value estimated with
the cooling function of Dicus (1972) scaled to the
column: Lν = ε̇n × V � 1.83 × 1046 erg s−1, with
V � (2 × 105) × (3 × 105)2 cm3.

Once the system reaches the quasi-stationary
state, radial profiles can be compared for different
accretion rates. Four different rates for each ini-
tial condition were computed. In all of these, the
piling up of material close to the neutron star sur-
face is seen. The velocity profiles remain noisy
and turbulent in the shocked region, but on av-
erage the analytical profile is globally recovered.
In Figure 7 these are plotted, along with den-
sity and pressure, for case MHD 0. Note also
that at greater accretion rates the shock is lo-
cated at lower height, as expected. For Ṁ/Ṁ0 =
1, 10, 100, 1000, the position of the shock in the simu-
lation is at Rsh/106cm = 7.06, 4.96, 3.74, 2.68, in ex-
cellent agreement with the analytical values given by
Rsh/106cm = 6.92, 4.80, 3.33, 2.31, respectively (see
Figure 8).
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4.2. Magnetic field submergence

We now consider the case with non-zero magnetic
field strength. Figure 9 shows the radial profiles
of density, pressure and magnitude of the velocity
for Ṁ = Ṁ0 with several field configurations: null
(MHD 0), constant horizontal (MHD H), constant
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Fig. 8. Accretion rate as a function of shock ra-
dius for the hydrodynamical simulations with Ṁ/Ṁ0 =
1000, 100, 10, 1 after a stationary state has been reached.
The analytical solution given by equation 14 is shown for
comparison.

vertical (MHD V), constant diagonal (MHD D) and
dipolar (MHD DIP), for comparative effects. The
initial intensity of the magnetic field in all cases is
1012 G, except in the dipole configuration, where it is
1012 G at the neutron star surface. We also overplot
the hydrodynamical solution for comparison. Note
that the profiles are practically the same at this ac-
cretion rate indicating that the magnetic field is not
playing an important role as far as the dynamics are
concerned.

In all simulated cases, regardless of the magnetic
field configuration, when the system has relaxed and
reached the quasi-stationary state, the field is com-
pletely submerged in the neutron star crust. Its
intensity rises accordingly, by up to two orders of
magnitude for the highest accretion rates. Figure 10
shows the distribution of magnetic field strength af-
ter the system has relaxed, when Ṁ = 1000 Ṁ0, for
our four initial magnetic field configurations. It is
only within the first km in the column, where the
matter piles up, that the magnetic field is at or above
the initial value in the calculation, and the compres-
sion is quite clear.

The initial dynamics in the MHD case are some-
what more violent than in the pure hydrodynamical
case. The infalling gas quickly drags the initial field
towards the neutron star surface since the ram pres-
sure, Pram = ρv2/2 is substantially greater than the
magnetic pressure Pmag = B2/8π, even for the small-
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Fig. 9. Radial profiles of density (top), pressure (middle)
and velocity (bottom) for Ṁ = Ṁ0 and various field
configurations (labeled).

est accretion rate, Ṁ = Ṁ0. The increased magnetic
pressure as compression takes place is insufficient to
overcome this flow, and large field strengths close
to the surface result. The effect on the large scale
dynamics is thus of a more transitory nature, and
sensitive to the initial conditions, rather than a per-
manent feature. As a second point, we note that
the magnetic field, advected along with the flow,
strongly fluctuates in strength in the shocked region
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Fig. 10. Maps (left half-panel) and horizontally-averaged vertical profiles (right half-panel) of magnetic field strength
for a magnetic field that is initially horizontal, case MHD H (top left), vertical, case MHD V (top right), diagonal, case
MHD D (bottom left), and dipolar, case MHD D (bottom right), after the system has relaxed for Ṁ = 1000Ṁ0. Note
the submergence of the magnetic field close to the neutron star surface.

as it piles up against the lower boundary, where neu-
trino cooling is efficient. The additional piling up of
material makes it even harder for the field to rise
to significant levels as the evolution proceeds fur-
ther. Nevertheless, as the system evolves the turbu-
lent structures that form initially begin to smooth
themselves until they disappear completely in the
hydrodynamical case, but some small scale structure
remains when magnetic fields are present.

Once the accretion rate drops significantly, it is
in principle possible that the field will rise buoyantly
through the envelope, playing some dynamical role
as the accretion time becomes long and the balance
between ram and magnetic pressure is reversed. This
will occur on a much longer time scale than simulated
here, and its modeling requires a different set of as-
sumptions in terms of the present set of calculations.

5. CONCLUSIONS

We have presented the results of two-dimensional
simulations of accretion in the hypercritical,

neutrino-cooled regime onto the surface of a neutron
star, using the FLASH code. The flow in accretion
columns for a variety of initial accretion rates was
simulated until a steady state was reached. We find
that at this stage, the location of the accretion shock,
where the flow transitions from free fall to subsonic
settling onto the neutron star surface, is well repro-
duced when compared with the analytical estimates
of Chevalier (1989). However, close to the surface,
matter piles up, the solution is no longer adiabatic,
and the self-similar character of the flow breaks down
as expected.

We performed a detailed comparison of the hy-
drodynamical and ideal MHD routines in FLASH,
and found excellent agreement between the two when
the initial field is null. For various finite field config-
urations (initially horizontal, vertical, diagonal and
dipolar), we find that performing the calculations
in two dimensions does not allow for any additional
buoyancy effects of the field to be manifested: for all
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accretion rates simulated, the initial field is entirely
advected by the flow and submerged close to the neu-
tron star surface. Its intensity rises accordingly, by
up to two orders of magnitude in some cases. In
principle, thus, it is possible for such an accretion
episode following core collapse and the formation of
a proto-neutron stars to effectively bury the initial
field and delay the appearance of a classical radio
pulsar (Muslimov & Page 1995). The simulated time
scales at present do not allow us to place hard con-
straints on the re-diffusion of the field at late times,
and a more quantitative estimation of this is left for
future work.
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