

The Effect of Socio-Scientific Issues-Based Inquiry Learning on Students' Chemical Literacy Skills

El efecto del aprendizaje por indagación basado en temas sociocientíficos sobre las habilidades de alfabetización química de los estudiantes

Citra Ayu Dewi,¹ Yeti Kurniasih¹ and Baiq Asma Nufida¹

Resumen

La alfabetización química entre estudiantes universitarios, evaluada mediante el marco de PISA, sigue siendo baja, especialmente entre los futuros docentes de química. Esto sugiere que las prácticas actuales en la educación superior tienen un impacto limitado en la mejora de dicha alfabetización. Un enfoque prometedor es el aprendizaje por indagación centrado en temas sociocientíficos (SSI, por sus siglas en inglés). Este estudio analiza el efecto de este tipo de aprendizaje en la alfabetización química de los estudiantes, con énfasis en los temas de ácidos y bases. Se utilizó un diseño cuasiexperimental con pretest y posttest en grupos control y experimental, y se recopilaron datos mediante una prueba de alfabetización química especialmente diseñada (coeficiente de confiabilidad $R = 0.817$). El análisis de datos incluyó pruebas t y cálculos del tamaño del efecto. Los resultados muestran una diferencia significativa entre los estudiantes que aprendieron mediante indagación basada en SSI y aquellos que recibieron enseñanza tradicional. El tamaño del efecto se ubica en la categoría fuerte, lo que confirma el impacto positivo significativo de este enfoque. Estos hallazgos demuestran que integrar temas sociocientíficos en el aprendizaje por indagación mejora eficazmente la alfabetización química en la educación superior.

Palabras clave: alfabetización química, temas sociocientíficos, aprendizaje por indagación, educación en ácidos y bases, reforma de la educación científica.

Abstract

Chemical literacy among university students, assessed using the PISA framework, remains low—particularly among pre-service chemistry teachers. This suggests that current higher education practices have limited impact on improving students' chemical literacy. One promising approach is inquiry-based learning centered on socio-scientific issues (SSI). This study examines the effect of SSI-based inquiry learning on students' chemical literacy, focusing on acid–base topics. A quasi-experimental pretest–posttest control group design was used, with data collected through a specially developed chemical literacy test (reliability coefficient $R = 0.817$). Data analysis involved t-tests and effect size calculations. Results indicate a significant difference between students taught using SSI-based inquiry learning and those taught through traditional methods. The effect size falls within the strong category, confirming the significant positive impact of this approach. These findings demonstrate that integrating SSI into inquiry-based learning effectively enhances chemical literacy in higher education.

Keywords : chemical literacy, socio-scientific issues, inquiry-based learning, acid-base education, science education reform.

CÓMO CITAR:

Citra Ayu Dewi, Yeti Kurniasih and Baiq Asma Nufida. (2025, julio-septiembre). The Effect of Socio-Scientific Issues-Based Inquiry Learning on Students' Chemical Literacy Skills. *Educación Química*, 36(3). <https://doi.org/10.22201/fq.18708404e.2025.3.89344>

¹ Universitas Pendidikan Mandalika, Indonesia.

Introduction

Twenty-first-century education guides chemistry learning toward the development of skills aligned with current societal needs and challenges. Chemical literacy refers to a person's ability to understand and apply chemical knowledge in everyday life (Thummathong & Thathong, 2018), encompassing three key aspects: knowledge, awareness, and the appropriate and effective application of chemistry (Shwartz et al., 2006). These competencies are a central concern for educators, both in the teaching process and in students' daily lives (Rusmansyah et al., 2023). Teachers adopt various strategies to foster the development of chemical literacy skills (Dewi et al., 2019); however, such efforts have not yet translated into high performance on the PISA assessment.

In scientific literacy among 15-year-olds, Indonesia ranked 74th out of 79 countries in the 2018 PISA survey, with an average score of 396—well below the international average of 487 (OECD, 2018). The 2022 PISA results show a further decline to 383, placing Indonesia 102 points below the global average (OECD, 2023). This suggests a disconnect between the learning process in schools and the cognitive demands assessed by PISA. Indonesian students tend to apply scientific knowledge only to low-level cognitive problems, struggling with higher-order tasks (Cahyana et al., 2017). This is partly due to students' limited problem-solving skills, especially in identifying, understanding, and applying basic science concepts to real-life situations (Hawa & Putra, 2018).

Thus, the role of the teacher is crucial in fostering students' chemical literacy from early education. Teachers are key agents in developing these skills (Islami et al., 2020). Chemically literate teachers can deliver chemistry content more effectively and deeply. According to Sumanik et al. (2021), teachers' chemical literacy has a positive impact on students' learning outcomes. Therefore, teacher candidates must be adequately prepared to support students' development of chemical literacy (Sumarni et al., 2021). Such preparation should begin during teacher training, ensuring that future educators are capable of selecting appropriate learning models and developing effective teaching materials to enhance students' chemical literacy. Well-prepared prospective teachers are expected to become professionals capable of guiding science learning in a globally competitive society (Dewi et al., 2022).

However, studies show that university students training to become chemistry teachers still fall short in chemical literacy based on PISA metrics. For instance, Sunarti (2015) reported that students at the State University of Surabaya demonstrated strength in scientific explanation, designing investigations, and interpreting data—but only at a basic level. Similarly, students at Indonesian public universities scored low in content, epistemic, and procedural domains of chemical literacy (Fadly et al., 2022). Djaen et al. (2021) evaluated 28 first-year students at Jember State University using a chemical literacy test on carbon compounds ($r = 0.718$), with an average score of 59.7 (medium category). Muntholib et al. (2020) assessed 71 first-year students at the State University of Malang using a test on chemical kinetics ($r = 0.744$), obtaining an average score of 63.24, also in the medium range. These findings indicate that higher education is not yet significantly contributing to students' chemical literacy. Interviews with lecturers at the University of Education Mandalika and UIN Mataram confirm that, despite adopting student-centered inquiry-based learning, students still struggle with chemical literacy skills.

One promising approach is the inquiry learning model based on socio-scientific issues (SSI), which can improve students' argumentation skills and foster multiple perspectives (Wahono et al., 2021). SSI-based inquiry allows students to independently build knowledge, supported by educators, through real-world social science issues (Hwang et al., 2023). It addresses complex, open-ended social problems, helping students contextualize chemical concepts within societal issues and thereby enhancing chemical literacy (Sulistina & Hasanah, 2024). SSI inquiry not only improves scientific understanding but also encourages ethical, moral, and civic engagement in science education (Çalik & Wiyarsi, 2024). It fosters motivation and analytical thinking by enabling students to explore scientific controversies and their societal implications (Avsar Erumit & Yuksel, 2023; Şaşmazören et al., 2023).

This model also promotes scientific behavior, decision-making, and critical discussion about socio-scientific controversies (Georgiou & Kyza, 2023). By connecting chemistry content to real-life issues, SSI-based inquiry enhances students' reasoning and understanding of scientific phenomena in meaningful contexts (Adal & Cakiroglu, 2023; Chen & Xiao, 2021). The integration of SSI into teaching strategies—such as e-modules and digital worksheets (Sibiç & Topcu, 2020)—further supports this pedagogical shift.

The SSI approach deepens the learning experience by linking scientific knowledge with students' lives and encouraging them to view science beyond classroom content (Cha et al., 2021; Ke et al., 2020, 2021). It also improves students' argumentation, reasoning, and overall scientific literacy (Baytelman et al., 2020; Bächtold et al., 2023; Betul Cebesoy & Chang Rundgren, 2023).

This study investigates the impact of SSI-based inquiry learning on students' chemical literacy regarding acid-base concepts. The research questions are: (1) Is there a significant difference in students' chemical literacy before and after SSI-based inquiry instruction? (2) How effective is this instructional model in improving chemical literacy? The study defines chemical literacy in three components: content (chemical topics), knowledge (understanding chemical concepts), and competency (applying chemical knowledge). The novelty of this study lies in its focus on authentic, current, and controversial socio-scientific issues as a foundation for improving students' chemical literacy through inquiry-based learning.

Method

This study employed a quasi-experimental pretest-posttest control group design. The sample was selected through a saturated sampling technique, whereby the entire population is included as the sample (Creswell, 2014). A total of 80 students from the Chemistry Education Program at the State Islamic University of Mataram participated in the study. Forty students were assigned to the experimental group, which was taught using the SSI-based inquiry model, while the other 40 were placed in the control group, which followed conventional instructional methods. Both groups completed a pretest before the intervention and a posttest afterward. The design of the research is summarized in Table 1.

Subject	Pretest	Treatment	Posttest
Experiment	O ₁	Inquiry-SSI	O ₁
Control	O ₂	Conventional	O ₂

TABLE 1. Research Design.

Note: O₁ = Pretest of the control group; O₂ = Posttest of the experimental group.

The study utilized two types of instruments: treatment instruments and measurement instruments. The treatment instruments—used during the teaching and learning activities—included the learning syllabus, semester learning plans, and student worksheets (see Appendix 1). The measurement instruments consisted of test items designed to assess students' chemical literacy skills. These items were developed by the researchers based on established indicators of chemical literacy.

The distribution of the chemical literacy components is shown in Table 2.

Context	Chemical Literacy Domain		Indicators of chemical literacy achievement	Item
	Knowledge	Competence		
Local-Environment	Content	Explaining the phenomenon scientifically	Explain the acid-base properties of soil types based on climate change phenomena due to global warming	1
	Procedural	Designing scientific inquiries	Propose a method to determine acidic, alkaline and neutral soil types using natural indicators	2
	Epistemic	Evaluating Scientific Inquiries	Choose the method used to measure soil pH	3
	Epistemic	Interpret data and facts scientifically	Interpreting the relationship between soil pH levels and apple plant growth in the environment due to extreme climate change phenomena	4
	Procedural	Explain the phenomenon scientifically	Applying the concept of acid neutralization and alkaline on the soil	5
Local-Health	Content	Explain the phenomenon scientifically	Explaining the effects of excess stomach acid based on the acid-base nature	6
	Procedural	Explain the phenomenon scientifically	Explain the concept of neutralization through the use of antacid drugs in reducing gastric acidity levels	7
	Content	Designing scientific inquiries	Designing a strong acid neutralization by strong base experimental procedure	8
	Epistemic	Evaluating Scientific Inquiries	Analyzing the acids and bases contained in food	9-10

TABLE 2. Aspects of Chemical Literacy based on Shwartz et al. (2006).

Local-Health	Content	Explain the phenomenon scientifically	Explaining the concept of asidolisis reaction in the case of applying vinegar acid due to bee sting marks that do not help relieve skin irritation	11
	Epistemic	Explain the phenomenon scientifically	Giving examples of bases in household materials as solutions to neutralize acids	12
	Epistemic	Interpret data and facts scientifically	Analyzing the principle of acid neutralization in the health field	13
Global Hazards and the Environment	Content	Explaining the phenomenon scientifically	Analyze strong and acidic properties weak based on acid rain	14
	Procedural	Designing scientific inquiries	Propose a method to determine Acid power of rainwater	15
	Procedural	Evaluate and Designing Scientific Inquiries	Analyzing the properties of strong acids based on acid rain on the environment	16
	Content	Interpreting data and Facts scientifically	Explaining the properties of strong acids based on acid rain on the environment	17
	Epistemic	Evaluating inquiries scientific	Analyze the causes of rain acid due to vehicle emissions Motor	18
National-Environment	Procedural	Designing scientific inquiries	Describe methods for measuring pH River water	19
	Content	Explaining the phenomenon scientifically	Calculating the concentration of a strong acid based on its pH value	20
	Epistemic	Explain the phenomenon scientifically	Explain the neutralization reaction through the addition of a certain amount of sodium carbonate to bring the pH of the river water back to standard	21

Personal-Health	Content	Explain the phenomenon scientifically	Explaining the strong alkaline properties	22
	Content	Explain the phenomenon scientifically	Explaining the relationship between the use of conditioner and the condition of the hair to be better	23
	Epistemic	Interpret data and facts scientifically	Giving examples and explaining acids which can neutralize bases in daily life	24

The chemical literacy instrument was administered to students who had completed introductory courses on acid-base topics. The instrument's validity and reliability were evaluated using the Cronbach's alpha test. In addition, a preliminary analysis—including tests for normality and homogeneity—was conducted to determine the appropriate statistical analyses.

For hypothesis testing, a t-test was employed to compare chemical literacy levels before and after the intervention. To evaluate the effectiveness of the SSI-based inquiry model, an effect size test was also performed.

The validity test results showed that all items had p-values greater than 0.05, indicating that all items were valid. These results are detailed in Table 3.

Item-Total Statistics				
Scale Mean if Item Deleted	Scale Variance if Item Deleted	Corrected Item-Total Correlation	Cronbach's Alpha if Item Deleted	
CL_1	22.0400	.42.207	.707	.791
CL_2	22.2800	.48.127	.883	.828
CL_3	22.0000	.44.167	.484	.804
CL_4	21.9600	.43.957	.573	.799
CL_5	21.9600	.44.873	.525	.802
CL_6	21.8400	.45.640	.427	.807
CL_7	21.6000	.47.167	.397	.812
CL_8	21.9600	.45.457	.516	.804
CL_9	21.6800	.45.310	.595	.801
CL_10	21.9200	.46.910	.550	.806
CL_11	22.0000	.47.250	.793	.819
CL_12	21.9200	.48.410	.408	.816
CL_13	21.9200	.46.827	.425	.812
CL_14	21.9600	.44.040	.517	.802
CL_15	22.3600	.46.573	.357	.810

TABLE 3. Validity of the Chemical Literacy Instrument.

CL_16	22.0400	47.290	.398	.811
CL_17	21.4800	46.927	.405	.812
CL_18	21.9600	45.290	.477	.805
CL_19	22.0400	46.123	.973	.817
CL_20	22.8800	48.027	.423	.811
CL_21	22.8400	48.640	.450	.814
CL_22	22.0800	46.827	.287	.813
CL_23	21.9600	47.540	.476	.820
CL_24	22.3200	49.143	.462	.822

The reliability test showed a Cronbach's alpha value of 0.817 for the 24-item instrument, indicating a very high level of internal consistency. The reliability results are presented in Table 4.

TABLE 4. The Reliability of Chemical Literacy Instrument

Cronbach's Alpha	N of Items
.817	24

Result and Discussions

The assessment of students' chemical literacy skills focused on two main dimensions: knowledge and competency. The knowledge component included content, procedural, and epistemic aspects, while the competency component encompassed the ability to explain scientific phenomena, design scientific inquiries, evaluate scientific processes, and analyze data and evidence.

Data were collected using pretest and posttest scores. Before conducting the t-test, tests for normality and homogeneity were performed to verify that the data were normally distributed and that variances were equal across groups. The Kolmogorov-Smirnov test was used for the normality test, applying a significance level of 0.05 with IBM SPSS 25. The results are shown in Table 5.

TABLE 5. Results of the Normality Test for Students' Chemical Literacy Skills.

Note: A significance value of 0.01 ($p < 0.05$) indicates a normal distribution.

Tests of Normality			
Kolmogorov-Smirnov ^a			
	Statistic	Df	Sig.
Chemical Literacy	.122	80	.01

Additionally, a homogeneity test was conducted using Levene's test ($\alpha = 0.05$), also with IBM SPSS 25. The outcomes are presented in Table 6.

TABLE 6. Results of the Homogeneity Test for Students' Chemical Literacy Skills.

Note: A significance value of 0.611 ($p > 0.05$) indicates homogeneous data.

	Levene Statistic	df1	df2	Sig.
Chemical Literacy	.264	1	80	.611

Finally, an independent t-test was conducted to determine the differences in students' chemical literacy skills before and after the application of the SSI-based inquiry learning model.

Differences in Students' Chemical Literacy Before and After the Implementation of SSI-based Inquiry Model

The purpose of this t-test is to compare students' levels of chemical literacy before and after applying the SSI-based inquiry model. Table 7 provides detailed information on the t-test results related to students' chemical literacy.

TABLE 7. Students' Chemical Literacy Skills Before and After the SSI-Based Inquiry Model Implementation.

One-Sample Statistics				
	N	Mean	Std. Deviation	Std. Error Mean
Pretest	40	33.6452	10.80910	1.94137
Posttest	40	44.2903	4.93419	.88621

After the treatment, students' average chemical literacy score increased to 44.29, compared to 33.64 prior to the intervention (see Table 7). Table 8 presents the results of the independent samples t-test used to assess the difference in scores.

TABLE 8. Differences in Students' Chemical Literacy Skills Before and After the SSI-Based Inquiry Model Implementation.

One-Sample Test						
Test Value = 0						95% Confidence Interval of the Difference
T	Df	Sig. (2-tailed)	Mean Difference	Lower	Upper	
Pretest	17.331	40	.000	33.64516	29.6804	37.6100
Posttest	49.977	40	.000	44.29032	42.4804	46.1002

The test results indicate a significance value of 0.000 ($p < .05$), supporting the alternative hypothesis (H_a). This suggests that there is a statistically significant difference in students' chemical literacy skills before and after the implementation of the SSI-based inquiry learning model. The findings demonstrate that the model positively influences students' chemical literacy by promoting a deeper understanding of chemical content through the analysis of social and scientific issues related to chemistry. It encourages students to seek and analyze relevant information, identify possible solutions to real-world problems, and evaluate their problem-solving processes.

Previous studies have shown that chemical literacy can be effectively developed through context-based learning on topics such as acid-base reactions, chemical equilibrium, and chemical bonding (Eny & Wiyarsi, 2019; Nurisa & Arty, 2019; Yustin & Wiyarsi, 2019). Students have demonstrated the highest proficiency in distinguishing between the concept of equilibrium as it relates to chemical substances and as it applies to equilibrium reactions in chemical contexts (Thummathong & Thathong, 2018). Additionally, the use of real-world examples and contextual discussions has been shown to enhance students' literacy skills in thermochemistry and thermodynamics (Cigdemoglu & Geban, 2015a).

The Effectiveness of the SSI-Based Inquiry Model on Students' Chemical Literacy Skills

To determine the effectiveness of the SSI-based inquiry model on students' chemical literacy, an effect size test was conducted. Table 9 provides the results.

Univariate Tests									
Dependent Variable		Sum of Squares	Df	Mean Square	F	Sig.	Partial Eta Squared	Noncent. Parameter	Observed Power ^a
Chemical Literacy	Contrast	53002.594	2	26501.297	497.055	.000	.888	994.109	1.000
	Error	6717.900	80	53.317					

TABLE 9. Effect Size of Students' Chemical Literacy Skills After the SSI-Based Inquiry Model Implementation.

The calculated effect size was 0.888, which falls into the "large" category. This indicates a strong effect of the SSI-based inquiry model on improving students' chemical literacy. Compared to conventional learning, the SSI-based approach significantly enhances students' understanding, largely due to its alignment with case-based learning. Real-life chemistry-related cases serve as a springboard for inquiry, prompting students to formulate questions and apply chemical knowledge more deeply (Yano et al., 2022).

Chemistry problems rooted in everyday life have been shown to support the development of chemical literacy (Bag & Calik, 2017; Cigdemoglu et al., 2017). Chemical literacy is linked to the ability to understand the structure and application of chemical knowledge (Broman & Parchmann, 2014; Dewi et al., 2019, 2021; Thummathong & Thathong, 2018; Ültay & Çalik, 2012; Wiyarsi, 2020).

Several studies support the claim that chemical literacy is effectively developed through context-based approaches on topics such as acid-base reactions, chemical equilibrium, and bonding (Eny & Wiyarsi, 2019; Nurisa & Arty, 2019; Wiyarsi et al., 2021; Yustin & Wiyarsi, 2019). In particular, students have shown high proficiency in interpreting the meaning of chemical equilibrium, both in terms of substance phenomena and equilibrium reactions (Ad'hiya & Laksono, 2018; Dewi et al., 2024). Contextualized learning and real-world examples also support improvement in thermochemistry and thermodynamics literacy (Cigdemoglu & Geban, 2015b).

Furthermore, studies suggest that problem-solving activities help students develop effective strategies for addressing scientific challenges (Che Lah et al., 2021). This method fosters a structured approach to real-world problems (Dewi et al., 2024; Sari et al., 2021), enabling students to apply their experience to new or similar problems with greater efficacy (Aslan, 2021; Dewi & Rahayu, 2023).

Conclusion

Based on the results of this study, the following conclusions can be drawn:

- There was a statistically significant difference in students' chemical literacy before and after the implementation of the SSI-based inquiry learning model.
- The application of the SSI-based inquiry learning model had a strong positive effect on students' chemical literacy skills.

Therefore, implementing the SSI-based inquiry model is an effective instructional strategy for significantly enhancing students' chemical literacy compared to conventional learning approaches.

It is recommended that future researchers provide continuous training in problem-solving to help students generate diverse solutions during the learning process. In addition, this research can be extended to broader populations and other relevant chemistry topics.

Acknowledgements

Special thanks to the Rector of Universitas Pendidikan Mandalika, Mataram, for funding this research project, and to the Chairman of LP3M UNDIKMA Mataram for their support, encouragement, and guidance throughout the research process.

References

Ad'hiya, E., & Laksono, E. W. (2018). Students' analytical thinking skills and chemical literacy concerning chemical equilibrium. *AIP Conference Proceedings*, 2021(1).

Adal, E. E., & Cakiroglu, J. (2023). Investigation of preservice science teachers' nature of science understanding and decision making on socioscientific issue through the Fractal Model. *Science & Education*, 32(2), 529–565.

Aslan, A. (2021). Problem-based learning in live online classes: Learning achievement, problem-solving skill, communication skill, and interaction. *Computers & Education*, 171, 104237.

Avsar Erumit, B., & Yuksel, T. (2023). Developing and using physical dynamic models on socioscientific issues to present nature of science ideas. *International Journal of Science and Mathematics Education*, 21(4), 1031–1056.

Bächtold, M., Pallarès, G., De Checchi, K., & Munier, V. (2023). Combining debates and reflective activities to develop students' argumentation on socioscientific issues. *Journal of Research in Science Teaching*, 60(4), 761–806.

Bag, H., & Calik, M. (2017). A thematic review of argumentation studies at the K-8 level. *Egitim ve Bilim-Education and Science*, 42(190). <https://doi.org/10.15390/eb.2017.6845>

Baytelman, A., Iordanou, K., & Constantinou, C. P. (2020). Epistemic beliefs and prior knowledge as predictors of the construction of different types of arguments on socioscientific issues. *Journal of Research in Science Teaching*, 57(8), 1199–1227.

Betul Cebesoy, U., & Chang Rundgren, S.-N. (2023). Embracing socioscientific issues-based teaching and decision-making in teacher professional development. *Educational Review*, 75(3), 507–534.

Broman, K., & Parchmann, I. (2014). Students' application of chemical concepts when solving chemistry problems in different contexts. *Chemistry Education Research and Practice*, 15(4), 516–529.

Cahyana, U., Kadir, A., & Gherardini, M. (2017). The relationship between critical thinking skills in science literacy skills in grade IV elementary school students. *Sekolah Dasar: Kajian Teori Dan Praktik Pendidikan*, 26(1), 14–22.

Çalik, M., & Wiyarsi, A. (2024). The effect of socio-scientific issues-based intervention studies on scientific literacy: A meta-analysis study. *International Journal of Science Education*, 1–23.

Cha, J., Kim, H. B., Kan, S.-Y., Foo, W. Y., Low, X. Y., Ow, J. Y., Bala Chandran, P. D., Lee, G. E., Yong, J. W. H., & Chia, P. W. (2021). Integrating organic chemical-based socio-scientific issues comics into chemistry classroom: Expanding chemists' toolbox. *Green Chemistry Letters and Reviews*, 14(4), 689–699.

Che Lah, N. H., Tasir, Z., & Jumaat, N. F. (2021). Applying alternative method to evaluate online problem-solving skill inventory (OPSI) using Rasch model analysis. *Educational Studies*, 1–23.

Chen, L., & Xiao, S. (2021). Perceptions, challenges and coping strategies of science teachers in teaching socioscientific issues: A systematic review. *Educational Research Review*, 32, 100377.

Cigdemoglu, C., Arslan, H. O., & Çam, A. (2017). Argumentation to foster pre-service science teachers' knowledge, competency, and attitude on the domains of chemical literacy of acids and bases. *Chemistry Education Research and Practice*, 18(2), 288–303.

Çiğdemoğlu, C., & Geban, Ö. (2015a). Improving students' chemical literacy levels on thermochemical and thermodynamics concepts through a context-based approach. *Chemistry Education Research and Practice*, 16(2), 302–317.

Çiğdemoğlu, C., & Geban, Ö. (2015b). Improving students' chemical literacy levels on thermochemical and thermodynamics concepts through a context-based approach. *Chemistry Education Research and Practice*, 16(2), 302–317. <https://doi.org/10.1039/C5RP00007F>

Creswell, J. W. (2014). *Research: Qualitative, quantitative, and mixed methods approaches* (4th ed.). Sage.

Dewi, C. A., Khery, Y., & Erna, M. (2019). An ethnoscience study in chemistry learning to develop scientific literacy. *Jurnal Pendidikan IPA Indonesia*, 8(2), 279–287.

Dewi, C. A., & Rahayu, S. (2022). The importance of optimizing chemical literacy through learning based on socioscientific issues in the 21st century. *Proceeding Seminar Nasional IPA* (48–359).

Dewi, C. A., & Rahayu, S. (2023). Implementation of case-based learning in science education: A systematic review. *Journal of Turkish Science Education*, 20(4).

Dewi, C. A., Rahayu, S., Muntholib, M., & Parlan, P. (2024). The importance of problem solving skills in chemistry learning as a demand in the 21st century. *AIP Conference Proceedings*, 3098(1).

Dewi, C. A., Yahdi, Y., & Sanova, A. (2024). Ethnochemistry-based e-module: Does it effect on improving students' chemical literacy. *Journal of Innovation in Educational and Cultural Research*, 5(4), 568–577.

Dewi, C. C. A., Erna, M., Haris, I., & Kundera, I. N. (2021). The effect of contextual collaborative learning based ethnoscience to increase student's scientific literacy ability. *Journal of Turkish Science Education*, 18(3), 525–541.

Djaen, N., Rahayu, S., Yahmin, Y., & Muntholib, M. (2021). Chemical literacy of first year students on carbon chemistry. *J-PEK (Jurnal Pembelajaran Kimia*, 6(1), 41–62. <https://doi.org/10.17977/um026v6i12021p041>

Eny, H. A., & Wiyarsi, A. (2019). Students' chemical literacy on context-based learning: A case of equilibrium topic. *Journal of Physics: Conference Series*.

Fadly, D., Rahayu, S., Dasna, I. W., & Yahmin, Y. (2022). The effectiveness of a SOIE strategy using socio-scientific issues on students' chemical literacy. *International Journal of Instruction*, 15(1), 237–258. <https://doi.org/10.29333/iji.2022.15114a>

Georgiou, Y., & Kyza, E. A. (2023). Fostering chemistry students' scientific literacy for responsible citizenship through socio-scientific inquiry-based learning (SSIBL). *Sustainability*, 15(8), 6442.

Hawa, A. M., & Putra, L. V. (2018). PISA for Indonesian students. *Janacitta*, 1(1).

Hwang, Y., Ko, Y., Shim, S. S., Ok, S.-Y., & Lee, H. (2023). Promoting engineering students' social responsibility and willingness to act on socioscientific issues. *International Journal of STEM Education*, 10(1), 11.

Islami, E., Zaky, R. A., & Nuangchaler, P. (2020). Comparative study of scientific literacy: Indonesian and Thai pre-service science teachers report. *International Journal of Evaluation and Research in Education*, 9(2), 261–268.

Ke, L., Sadler, T. D., Zangori, L., & Friedrichsen, P. J. (2020). Students' perceptions of socio-scientific issue-based learning and their appropriation of epistemic tools for systems thinking. *International Journal of Science Education*, 42(8), 1339–1361.

Ke, L., Sadler, T. D., Zangori, L., & Friedrichsen, P. J. (2021). Developing and using multiple models to promote scientific literacy in the context of socio-scientific issues. *Science & Education*, 30(3), 589–607.

Muntholib, M., Ibnu, S., Rahayu, S., Fajaroh, F., Kusairi, S., & Kuswandi, B. (2020). Chemical literacy: Performance of first year chemistry students on chemical kinetics. *Indonesian Journal of Chemistry*, 20(2), 468–482. <https://doi.org/10.22146/ijc.43651>

Nurisa, I., & Arty, I. S. (2019). Measuring students' chemistry literacy ability of acid and base concepts. *Journal of Physics: Conference Series*, 1233(1), 012018.

OECD. (2018). *OECD science, technology and innovation outlook 2018*. OECD Publishing.

OECD. (2023). *PISA 2022 results*. <https://www.oecd.org/publication/pisa-2022-results/>

Rusmansyah, R., Leny, L., & Sofia, H. N. (2023). Improving students' scientific literacy and cognitive learning outcomes through ethnoscience-based PjBL model. *Journal of Innovation in Educational and Cultural Research*, 4(1), 1–9.

Sari, Y. I., Utomo, D. H., & Astina, I. K. (2021). The effect of problem based learning on problem solving and scientific writing skills. *International Journal of Instruction*, 14(2), 11–26.

Şaşmazören, F., Karapınar, A., Sarı, K., & Demirer, T. (2023). Teaching socioscientific issues through scientific scenarios: A case evaluation based on secondary school students' views. *Bartın University Journal of Faculty of Education*, 12(1), 124–145.

Shwartz, Y., Ben-Zvi, R., & Hofstein, A. (2006). Chemical literacy: What does this mean to scientists and school teachers? *Journal of Chemical Education*, 83(10), 1557.

Sibiç, O., & Topcu, M. S. (2020). Pre-service science teachers' views towards socio-scientific issues and socio-scientific issue-based instruction. *Journal of Education in Science Environment and Health*, 6(4), 268–281.

Sulistina, O., & Hasanah, S. M. (2024). Improving chemical literacy skills: Integrated socio-scientific issues content in augmented reality mobile. *International Journal of Interactive Mobile Technologies*, 18(5).

Sumanik, N. B., Nurvitasari, E., & Siregar, L. F. (2021). Analysis of the profile of science literacy ability of prospective chemistry education teachers. *QUANTUM: Jurnal Inovasi Pendidikan Sains*, 12(1), 22–32.

Sumarni, R., Soesilawati, S. A., & Sanjaya, Y. (2021). Science literacy and students' mastery of concepts after learning the excretory system using science literacy-based practicum guidelines. *Assimilation: Indonesian Journal of Biology Education*, 4(1), 32–36.

Sunarti, T. (2015). Understanding of science literacy of prospective physics teachers at the State University of Surabaya. *Seminar Nasional Fisika dan Pembelajarannya*, 2015, 34–39.

Thummathong, R., & Thathong, K. (2018). Chemical literacy levels of engineering students in Northeastern Thailand. *Kasetsart Journal of Social Sciences*, 39(3), 478–487. <https://doi.org/10.1016/j.kjss.2018.06.009>

Ültay, N., & Çalik, M. (2012). A thematic review of studies into the effectiveness of context-based chemistry curricula. *Journal of Science Education and Technology*, 21(6), 686–701. <https://doi.org/10.1007/s10956-011-9357-5>

Wahono, B., Chang, C.-Y., & Khuyen, N. T. T. (2021). Teaching socio-scientific issues through integrated STEM education: An effective practical averment from Indonesian science lessons. *International Journal of Science Education*, 43(16), 2663–2683. <https://doi.org/10.1080/09500693.2021.1983226>

Wiyarsi, A. (2020). Vocational high school students' chemical literacy on context-based learning: A case of petroleum topic. *Journal of Turkish Science Education*, 17(1), 147–161. <https://doi.org/10.36681/tused.2020.18>

Wiyarsi, A., Prodjosantoso, A. K., & Nugraheni, A. R. E. (2021). Promoting students' scientific habits of mind and chemical literacy using the context of socio-scientific issues on the inquiry learning. *Frontiers in Education*, 6, Article 660495. <https://doi.org/10.3389/feduc.2021.660495>


Yano, J., Gaffney, K. J., Gregoire, J., Hung, L., Ourmazd, A., Schrier, J., Sethian, J. A., & Toma, F. M. (2022). The case for data science in experimental chemistry: Examples and recommendations. *Nature Reviews Chemistry*, 6(5), 357-370.

Yustin, D. L., & Wiyarsi, A. (2019). Students' chemical literacy: A study in chemical bonding. *Journal of Physics: Conference Series*, 1397(1), 012036.

Appendix 1. Worksheet

TAHAP KE-1: ORIENTATION

"Hujan Asam di Sejumlah Kota"

Gambar 1. Hujan Asam di Sejumlah Kota

Kementerian Lingkungan Hidup menemukan indikasi potensi terjadinya hujan asam di sejumlah kota sebagai dampak pencemaran lingkungan. Berdasarkan data 2010-2019, kota-kota yang memiliki kecenderungan tingkat keasaman air hujan (pH) di bawah lima yaitu Jakarta, Serpong, Kotabang, Bandung dan Maros. Air hujan normal biasanya memiliki pH minimal 5,6 sedangkan di kota-kota tersebut air hujananya cenderung memiliki pH 5,40 hingga 4,30 atau bersifat asam. Koncentrasi Nitrogen dioksida (NO₂), biasanya terjadi akibat polutan dari asap kendaraan, pabrik, di 22 kota seperti Makassar, Balikpapan, dan Samarinda meningkat pada 2012. Koncentrasi Karbonmonoksida (CO), atau gas yang dihasilkan dari pembakaran tak sempurna senyawa karbon yang bersifat racun terdata cukup tinggi di Surabaya, Jakarta Timur, dan Pekanbaru. Sebuah studi pada 2012 atas kerjasama Kementerian Lingkungan Hidup dan UNEP memperkirakan besarnya biaya kesehatan penduduk Jakarta yang telah dikeluarkan pada 2010 terkait pencemaran udara. Dengan ancaman biaya perawatan minimal hingga maksimal, biaya tersebut berkisar antara Rp 697,9 miliar hingga Rp30,5 miliar. Biaya besar tersebut akibat penyakit yang berkaitan dengan pencemaran udara seperti asma, infeksi saluran pernafasan atas (ISPA), pneumonia, broncopneumonia, dan penyempitan saluran pernafasan/puru kronis.

LEMBAR KERJA MAHASISWA INKUIRI BERBASIS SSI

Menurut pemantauan Badan Meteorologi Klimatologi dan Geofisika, terdapat 27 kota di Indonesia yang memiliki tingkat keasaman air hujan (pH) di bawah lima atau bersifat asam. Kota-kota itu meliputi Angkasa Pura, Jayapura, Bandung-Jawa Barat, Banjarmasin, Samarinda, Bawil I-Medan, Branti-Lampung, Ciledug-Tangerang, Citeko-Ciranua, Damaga-Sorong, Juanda-Surabaya, Karang Ploso-Malang, Kayuuhuhu-Manado, Kemayoran-Jakarta, Kotabang-Sumbawa, Ngurah Rai-Denpasar, Panakukang-Ujung Pandang, dan Pula. Bazi-Bengkulu, Kemudian Sampali-Medan, Samuruhangi-Manado, Selaparang-Mataram, Semarang-Jawa Tengah, Siantan-Kalbar, Siringin-Padang, Simpang Tiga-Pekanbaru, Tangerang-Tangerang, Tegal-Jawa Tengah, Timika-Papua, Tjilik Riwut-Palangkaraya, Winangun-Manado, Yogyakarta.

Hujan asam disebabkan oleh belerang (sulfur) yang merupakan pengotor dalam bahan bakar fosil serta nitrogen di udara yang bereaksi dengan oksigen membentuk sulfur dioksida dan nitrogen oksida. Zat-zat ini berdosis ke atmosfer dan bereaksi dengan air untuk membentuk asam sulfat dan asam nitrat yang mudah larut sehingga jatuh bersama air hujan. Air hujan yang asam tersebut akan meningkatkan kadar keasaman tanah dan air permukaan yang terbukti berbahaya bagi keluhutan ikan dan tanaman. Usaha untuk mengatasi hal ini saat ini sedang gencar dilaksanakan. Secara alami hujan asam dapat terjadi akibat semburan dari gunung berapi dan dari proses biologis di tanah, rawa, dan laut. Akan tetapi, mayoritas hujan asam disebabkan oleh aktivitas manusia seperti industri, pembangkit tenaga listrik, kendaraan bermotor dan pabrik pengolahan pertanian (terutama amonia). Gas-gas yang dihasilkan oleh proses ini dapat terbawa angin hingga ratusan kilometer di atmosfer sebelum berubah menjadi asam dan terdeposit ke tanah.

Bulky terjadinya peningkatan hujan asam diperoleh dari analisa es kubus. Terlihat turunnya kadar pH sejak dimulainya Revolusi Industri dan menjadi 4,5 atau 4. Informasi lain diperoleh dari unsur yang dikenal sebagai ion-ion yang menghuni kolam-kolam. Setelah bertahun-tahun, organisme-organisme yang mati akan mengendap dalam lapisan-lapisan sedimen di dasar kolam. Pengendapan lapisan sedimen akan meningkat pada pH tertentu, sehingga jumlah lapisan sedimen yang ditemukan di dasar kolam akan memperlihatkan perubahan pH secara tahunan bila kita melihat ke masing-masing lapisan tersebut. Sejak dimulainya Revolusi Industri, jumlah emisi sulfur dioksida dan nitrogen oksida ke atmosfer turut meningkat. Industri yang menggunakan bahan bakar fosil,

LEMBAR KERJA MAHASISWA INKUIRI BERBASIS SSI

terutama batu bara merupakan sumber utama meningkatnya okida belerang ini. Pembacaan pH di area industri ladang-ladang tercatat hingga 2,4 (tingkat keseraman sulfur). Sumber-sumber ini ditambah oleh transportasi, merupakan penyumbang utama hujan asam.

Masalah hujan asam tidak hanya meningkat sejalan dengan pertumbuhan populasi manusia dan industri tetapi telah berkenaan menjadi lebih luas. Penggunaan cerobong asap yang tinggi untuk mengangkut polusi lokal berkontribusi dalam penyebaran hujan asam, karena emisi gas yang dilepaskan ke arah sirkulasi udara regional yang memudahkan jangkauan lebih luas. Sering sekali, hujan asam terjadi di daerah yang jauh dari lokasi sumbernya, di mana daerah pegunungan cenderung memperoleh lebih banyak karena tingginya curah hujan. Terdapat hubungan yang erat antara rendahnya pH dengan berkurangnya populasi ikan di sungai-sungai maupun danau-danau. pH di bawah 4,5 tidak memungkinkan bagi ikan untuk hidup, sementara pH 6 atau lebih tinggi akan membantu pertumbuhan populasi ikan. Asam di dalam air akan menghambat produksi enzim dari larva ikan untuk keluar dan telurnya. Asam juga mengikuti logam beracun seperti ion logam aluminium di sungai maupun danau. Aluminium akan menyebabkan beberapa ikan mengeluarkan lendir berlebihan di sekitar insangnya sehingga ikan sulit bernafas. Pertumbuhan Phytoplankton yang menjadi sumber makanan ikan juga dihambat oleh tingginya kadar pH.

Pertumbuhan tanaman dipengaruhi oleh hujan asam dalam berbagai macam cara. Lapisan lilm pada daun rusak sehingga nutrisi menghilang sehingga tanaman tidak tahan terhadap leadaan dingin, jauar dan serangan. Pertumbuhan akar menjadi lambat sehingga lebih sedikit nutrisi yang bisa diambil, dan mineral-mineral penting menjadi hilang. Ion logam beracun seperti alih-alih hujan asam menjadi ancaman yang besar bagi manusia. Tembaga di air berdampak pada timbulnya wabah diare pada anak dan air tercemar aluminium dapat menyebabkan penyakit Alzheimer. Hujan asam dilaporkan pertama kali di Manchester, Inggris, yang menjadi kota penting dalam Revolusi Industri. Pada tahun 1852, Robert Angus Smith memenangkan hubungan antara hujan asam dengan polusi udara. Istilah hujan asam tersebut mulai digunakan pada tahun 1872. Ia mengamati bahwa hujan asam dapat mengarah pada kehancuran alam. Walupun hujan asam ditemukan di tahun 1852, baru pada tahun 1970-an para ilmuwan mulai mengadakan

LEMBAR KERJA MAHASISWA INKUIRI BERBASIS SSI

banyak penelitian mengenai fenomena ini. Kedua-dua masyarakat akan hujan asam di Amerika Serikat meningkat di tahun 1990-an setelah di New York Times memuat laporan dari Hubbard Brook Experimental Forest di New Hampshire tentang banyaknya kerusakan lingkungan yang dialami oleh hujan asam.

Sumber Informasi:
<https://www.detik.com/berita-jawa-barat/d-1119700/hujan-asam-rasul-pating-tembaga-dihabung>
<https://jambi.antaranews.com/berita/209001/semulah-kota-termaklasi-hujan-asam>
<https://www.kompas.com/kota/read/2022/10/05/070000560/hujan-asam-penyebar-peser-dan-pakal-dan-cara-unesco-saliva/pasenall>
<https://www.liputan6.com/hot/read/4892028/penyebar-hujan-asam-di-indonesia-ketemu-dan-pakal-dan-peser-terpadu>
<https://www.antaranews.com/berita/209001/semulah-kota-termaklasi-hujan-asam>
<https://jambi.antaranews.com/berita/209001/semulah-kota-termaklasi-hujan-asam>

TAHAP KE-2: RUMUSAN MASALAH

Menganalisa Kasus

Berdasarkan bacaan diatas, untuk mengetahui sifat asam basa, buatlah rumusan masalah dengan kata kunci:

- Senyawa yang bersifat asam dan basa.
- Indikator untuk menentukan sifat keasaman dan kebasaan.
- Dan seterusnya...

Menentukan Secara Mandiri Informasi Data dan Literatur Tambahan

Jika kita perhatikan, saat kita memakai sabun saat mandi ketika kita membilas dengan sedikit air licin ditumbuh masih terasa dan kalau dibilas dengan banyak air busuk dan licinnya hilang. Tanpa sengaja juga saat kita memakai sabun kadang-kadang suka masuk ke mulut dan rasanya pahit.

Mengapa sabun itu terasa licin dan pahit? Coba jelaskan!

Menentukan Langkah Penyelesaian Kasus

- Tentukan urutan langkah kerja percobaan untuk membuktikan hipotesis Anda sebagaimana berikut sistematis.
- Konsultasikan kepada dosen spakal rancana kerja Anda sudah benar dan dapat dikenakan.
- Jika sudah benar, buatlah Diagram Alir dari langkah percobaan yang telah Anda urutkan secara benar.
- Presentasikan Diagram Alir yang telah dibuat secara benar sebelum praktikum dimulai.

LEMBAR KERJA MAHASISWA INKUIRI BERBASIS SSI

e) Lakukan percobaan sesuai urutan langkah percobaan yang telah Anda rencanakan dalam Diagram Alir yang telah dibuat!

Percobaan 1 (Menggunakan Indikator Alami)

No.	Langkah kerja yang dicak	Urutan ke
1.	Tumbuklah bahan-bahan alami yang akan digunakan menjadi indikator dengan memperasnya dan tambahkan air. Kemudian, amati warna indikator alami tersebut.	
2.	Siapkan larutan yang akan diuji yaitu: HCl, CH ₃ COOH, NaOH, LiOH, HNO ₃ , dan H ₂ SO ₄ .	
3.	Urutkan perlakuan pertama masukkan elektrik konyit ke dalam 6 tabung reaksi yang telah diisi larutan yang akan diuji. Begitupun perlakuan kedua, dan seterusnya menggunakan indikator alami yang lain.	
4.	Siapkan 6 tabung reaksi dan isolasi dengan HCl, CH ₃ COOH, NaOH, LiOH, HNO ₃ , dan H ₂ SO ₄ .	
5.	Amati perubahan yang terjadi dan catat hasilnya!	
6.	Siapkan bermacam-macam bahan alami yang akan digunakan menjadi indikator yaitu: konyit, kuliuk ungu, bunga sepatu, buah manggis, buah belimbing, dan bunga pacar air.	

Percobaan 2 (Menggunakan Kertas Lakmus)

No.	Langkah kerja yang dicak	Urutan ke
1.	Ambil kertas lakmus merah, kemudian dicelupkan dalam larutan yang ada pada plat reaksi. Amati perubahan warna pada kertas lakmus merah.	
2.	Siapkan plat tetes dan marumukkan larutan yang akan diuji secara berurut pada lubang plat tetes yaitu: HCl, CH ₃ COOH, NaOH, LiOH, HNO ₃ , dan H ₂ SO ₄ .	
3.	Amati perubahan yang terjadi dan catat hasilnya!	
4.	Ulangi langkah ke 2 dengan menggunakan kertas lakmus biru dan amati perubahan warna pada kertas lakmus biru.	

LEMBAR KERJA MAHASISWA INKUIRI BERBASIS SSI

TAHAP KE-3: PENGUMPULAN DATA

Dari pemaparan metode kerja menganalisa sifat asam basa secara umum diatas, rancanglah sebuah prosedur percobaan menganalisa sifat asam basa dengan menentukan alat dan bahan apa saja yang dibutuhkan.

a. Alat yang dibutuhkan

No	Nama Alat	Jumlah

b. Bahan yang dibutuhkan

No	Nama Bahan	Jumlah

LEMBAR KERJA MAHASISWA INKUIRI BERBASIS SSI

Tulilah hasil pengamatan Anda pada tabel berikut ini!

Percobaan 1 (Menggunakan Indikator Alami)

Indikator Alami	Warna Indikator Mula-mula	Warna Indikator dalam Larutan				
		HCl	CH ₃ COOH	NaOH	LiOH	HNO ₃
Kunyit						
Kubis Ungu						
Bunga Sepatu						
Kulit Manggis						
Buah Belimbing						
Bunga Pacar Air						
Sifat Larutan						

Percobaan 2 (Menggunakan Kertas Lakmus)

Bahan Larutan	Perubahan Warna		Sifat Larutan	
	Lakmus Merah	Lakmus Biru	Asam	Basa
HCl				
CH ₃ COOH				
NaOH				
LiOH				
LiOH				
H ₂ SO ₄				

LEMBAR KERJA MAHASISWA INKUIRI BERBASIS SSI

TAHAP KE-4: EVALUATION

Berdasarkan praktikum yang telah Anda lakukan, silahkan diskusikan bersama kelompok Anda pertanyaan-pertanyaan di bawah ini serta buatlah laporan hasil praktikum dan kumpulkan kepada pengajar Anda!

1. Dari larutan yang diuji, manakah senyawa yang bersifat asam dan basa?
Jawab:.....
2. Bagaimanakah perubahan kertas lakmus merah dan biru ketika dicelupkan ke dalam larutan uji?
Jawab:.....
3. Bagaimanakah perubahan warna pada larutan uji ketika ditambahkan indikator alami? Serta dapatkah ekstrak bunga, buah/tumbuhan dijadikan indikator asam dan basa? Jelaskan
Jawab:.....
4. Sebutkan sifat dari asam dan basa berdasarkan hasil praktikum yang telah kelompok Anda lakukan baik menggunakan indikator alami ataupun kertas lakmus!
Jawab:.....

LEMBAR KERJA MAHASISWA INKUIRI BERBASIS SSI

TAHAP KE-5: CONCLUSION-INTERPRETATION

Mengemukakan Pendapat

Membuat Kesimpulan

Presentasi

LEMBAR KERJA MAHASISWA INKUIRI BERBASIS SSI

Appendix 2. Chemical Literacy Instrument

<p>Lampiran 2. Instrumen Tes Literasi Kimia</p> <p>PETUNJUK Mengerjakan Soal:</p> <ol style="list-style-type: none"> 1. Isilah identitas diri pada kolom yang disediakan 2. Tulislah jawaban secara rurut pada lembar jawaban yang telah disediakan 3. Soal yang tersedia berjumlah 24 butir soal bentuk uraian 4. Waktu pengerjaan soal adalah 90 menit 5. Apabila terdapat soal yang kurang jelas, dapat Anda tanyakan kepada pengawas 6. Peniksalah kembali jawaban Anda sebelum menyerahkannya kepada pengawas <p>A. Pohon Apel Bacalah teks di bawah ini dan jawablah pertanyaan pada lembar yang telah disediakan.</p> <p></p> <p>Ana ingin menanam pohon apel di pekarangan rumahnya. Setelah ditanam dandi siram air yang cukup setiap hari, ternyata pertumbuhan pohon Apel Ana tidak baik. Namun, Ana memutuskan menyelidiki mengapa tanaman apel tidak dapat tumbuh dengan baik di pekarangan rumahnya. Dari hasil penyelidikan yang dilakukan Ana ditemukan bahwa terjadi tren penurunan suhu rata-rata 0.5°C pertahannya. Kenaikan suhu ini berpotensi terjadinya pemanasan global akibat perubahan iklim. Adanya perubahan iklim yang cukup ekstrim bersamaan dengan perilaku manusia hingga mang turba hujan makin menyusut, efek rumah kaca, gas buangan kendaraan dan industri. Laju peningkatan polusi udara sejalan dengan meningkatnya suhu udara. Akibatnya tanaman pohon apel tidak bisa tumbuh dengan baik. Teman-teman Ana menyarankan agar Ana menanam pohon kopi saja di pekarangan rumahnya, karena pohon kopi tumbuh subur di lingkungan tempat tinggalnya.</p>	<p>Pertanyaan</p> <ol style="list-style-type: none"> 1. Apakah jenis tanah pada daerah tempat tinggal Ana asam, basa, atau netral? Jelaskan jawaban Anda! 2. Ajukanlah suatu metode untuk menentukan jenis tanah (asam, basa, atau netral) dengan menggunakan salah satu indikator alami! Tuliskan langkah-langkahnya! 3. Sebutkan metode lain yang dapat digunakan untuk mengukur pH tanah! Jelaskan alasan Anda mengapa memilih metode tersebut! 4. Kandungan pH tanah di pekarangan rumah Ana berada pada rentang 4-6. Berdasarkan data pH tersebut, apakah pohon apel dapat tumbuh di pekarangan rumah Ana? Mengapa? 5. Jika Ana menanam pohon apel di pekarangan rumahnya, cara apa saja yang dapat dilakukan untuk membuat pertumbuhan pohon apelnya lebih baik?
<p>B. Penyakit Maag Bacalah teks di bawah ini dan jawablah pertanyaan pada lembar yang telah disediakan.</p> <p></p> <p>Tama adalah seorang mahasiswa berprestasi dan aktif dalam berbagai kegiatannya. Oleh karena kebiasaan dan padatnya kegiatan, Tama sering melewati waktu makananya. Setiap kali Tama terlambat makan, maka ia akan mengeluhkan sakit dan nyeri pada perutnya. Hasil pemeriksaan dokter memperjukkan Tama menderita sakit maag karena pola makananya yang tidak teratur. Dokter mengajurkan agar Tama mengurangi konsumsi buah-buahan masam, seperti lemon karena dapat memicu kenaikan asam lambung. Dalam perkembangan dunia farmasi, telah ditemukan berbagai obat maag yang mengandung antasida. Antasida berfungsi untuk mengurangi tingkat keasaman lambung, hal ini karena antasida mengandung senyawa berbentuk basa, seperti magnesium hidrokksida ($\text{Mg}(\text{OH})_2$) dan aluminium hidrokksida ($\text{Al}(\text{OH})_3$).</p> <p>Pertanyaan</p> <ol style="list-style-type: none"> 6. Mengapa penyakit maag dapat menyebabkan nyeri lambung bagi penderitanya? Jelaskan jawaban Anda! 7. Mengapa antasida dapat mengurangi tingkat keasaman lambung? Jelaskan jawaban Anda! 8. Bagaimana cara penerapan asam kuat oleh basa kuat? Rancanglah prosedur percobaannya! 9. Mengapa penderita maag dianjurkan menghindari mengkonsumsi buah lemon? Jelaskan jawaban Anda! 	<p>Pertanyaan</p> <ol style="list-style-type: none"> 10. Mengapa obat antasida dapat mengurangi kadar asam lambung dan jelaskan alasannya! 11. Mengapa olesan asam kuat pada bekas sengatan lebah tidak melembutkan meredakan iritasi? Jelaskan jawaban Anda! 12. Sebutkan 2 bahan rumah tangga yang dapat digunakan sebagai pertolongan pertama dalam mengurangi iritasi akibat sengatan lebah! Jelaskan jawaban Anda! 13. Data hasil penelitian memperjukkan bahwa larutan garam memiliki kemampuan untuk mematikan bakteri sehingga dapat dijadikan sebagai media untuk tindakan preventif <p></p> <p>Diko mendapatkan sengatan lebah di lehernya yang mengakibatkan rasa terbakar dan nyeri di daerah bekas sengatannya. Nadia menyarankan Diko untuk mengoleskan asam kuat (CH_3COOH) pada bekas sengatannya sebagai pertolongan pertama sebelum ditangani secara medis, karena pada saat ia terkena sengatan lewon, hal tersebut ampuh untuk mengurangi iritasi akibat sengatan lewon di kulitnya. Namun, saat Diko mengoleskan asam kuat pada bekas sengatan lebah di lehernya, ternyata tindakan tersebut tidak membantu meredakan iritasi akibat sengatan lebah yang dialaminya.</p>

terhadap timbulnya plak gigi. Berdasarkan fakta ilmiah tersebut, Apakah larutan garam (NaCl) dapat membantu mengurangi efek iritasi akibat sengatan lebah sesuai prinsip pengetahuan asam atau basa? Jelaskan jawaban Anda!

D. Hujan Asam

Bacalah teks di bawah ini dan jawablah pertanyaan pada lembar yang telah disediakan.

Bandung, Rabu - Bandung dihantui bahan hujan asam. Tingginya sumber pencemaran udara dari berbagai macam hal seperti pembuangan gas emisi transportasi dan industri, meningkatnya pH air hujan dari pH normal dan bersifat basa bisa memicu drastis dan asam hingga pH 4.5.

Menurut Kepala Pusat Pemanfaatan Sains Atmosfer dan Ilmu Lembaga Penerbangan dan Antrikta Nasional (LAPAN), Thomas Djamiluddin, di Bandung, Rabu (22/10), di wilayah Bandung dan sekitarnya, indikasi timbulnya hujan asam bisa dilihat dari munculnya bekas sulfat berwarna hijau pada batang tembaga di beberapa tempat. Di antaranya, seperti patung Perisik di Bandung atau Daendels Pangrango Cornel di Sumedang. Media pengamarnya adalah ion sulfat yang turun melalui air hujan.

Pada tahun 1998, pH air hujan di Bandung dan sekitarnya mulai kurang dari 5.6 dan bahkan berubah parah, atau pada rendah, menjadi 4.5 pada tahun 2002. "Sudah saatnya ada pengendalian SO₂ dan NO_x khususnya dari gas buang alat transportasi. Perannya menyumbang efek terburuk bagi hujan asam yang hingga kini masih terjadi berupa air hujan," katanya (Kompas.com - 22/10/2008, 20:49 WIB).

Pertanyaan

14. Mengapa hujan pada keadaan normal (mengandung H₂CO₃) tidak berbahaya bagi lingkungan dibandingkan dengan hujan asam (mengandung H₂SO₄ dan HNO₃) padahal sama-sama bersifat basa? Jelaskan jawaban Anda!

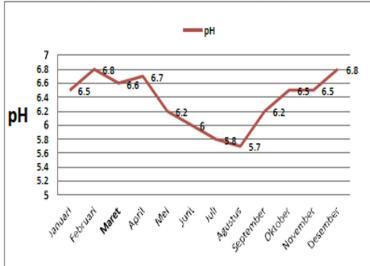
15. Rancanglah suatu alat untuk menyelidiki apakah hujan dapat dikategorikan hujan asam!

16. Bagaimana cara untuk mengetahui bahwa telah terjadi hujan asam di suatu daerah jika dilihat dari kondisi lingkungan daerah tersebut? Jelaskan jawaban Anda!

17. Jelaskan 3 kerusakan lingkungan yang dapat terjadi akibat hujan asam! Kemukakan penjelasan Anda!

18. Salah satu metode pencegahan hujan asam adalah dengan mengurangi penggunaan kendaraan bermotor. Mengapa demikian? Jelaskan jawaban Anda!

E. Limbah Industri


Bacalah teks di bawah ini dan jawablah pertanyaan pada lembar yang telah disediakan.

Pabrik biasa dibangun di dekat sungai atau danau. Salah satu alasannya karena lebih mudah membuang limbah pabrik di sungai atau danau. Dahulu, limbah hanya dibuang langsung begitu saja tanpa memikirkan resikonya. Namun, seiring perkembangan zaman dan meningkatnya jumlah industri mengakibatkan jumlah limbah yang meningkat pula. Oleh

karena itu pemerintah membuat peraturan yang harus diikuti oleh perusahaan dalam membuang limbah sisa industrinya.

Berikut ini merupakan data tingkat keasaman air sungai X pada tahun 2017.

Zaki adalah seorang ahli kimia yang bekerja di pabrik X. Ia bertugas untuk memeriksa dan mengontrol pH air sungai dan danau tempat mereka membuang limbah agar tidak tercemar. Pabrik tempat Zaki bekerja menghasilkan limbah asam klorida (HCl). Untuk mengendalikan pH air sungai, Zaki dapat menggunakan sodium karbonat (Na₂CO₃) dengan menerapkan konsep asam basa dalam pengaplikasiannya.

Pertanyaan

19. Jelaskanlah suatu metode untuk mengukur pH air sungai tersebut!

20. Berapakah konsentrasi dari asam klorida air sungai pada bulan Juni dalam mol/L!

21. Sarankanlah jumlah sodium karbonat (gram/L) yang harus ditambahkan Zaki untuk membuat pH air sungai kembali sesuai standar pada bulan Juni jika diketahui debit aliran sungai tersebut adalah 6 m³/s (6.000 liter). Jelaskan berdasarkan reaksi yang terjadi!

F. Sampo dan Kondisioner

Bacalah teks di bawah ini dan jawablah pertanyaan pada lembar yang telah disediakan.

Dina mempunyai masalah rambut yang kaku dan rapuh. Ia sudah mencoba berbagai sampo dan keramas setiap hari untuk mengatasi masalah tersebut, namun tidak ada perubahan pada kondisi rambutnya. Meli menyarankan kepada Dina untuk tidak sering-sering mencuci rambutnya dengan sampo, karena hanya akan menambah rusak rambut. Melihargai rambutnya untuk memakai kondisioner setelah keramas menggunakan sampo. Setelah menambah waktu keramasnya menjadi dua kali sehari dan memakai kondisioner, rambut Dina menjadi tidak kaku dan rapuh lagi.

Pertanyaan

22. Mengapa terlalu sering mencuci rambut menggunakan sampo tidak baik bagi rambut? Jelaskan jawaban Anda!

23. Mengapa setelah pemakaian kondisioner akan membuat kondisi rambut menjadi lebih baik? Jelaskan jawaban Anda!

24. Sebutkan salah satu bahan alami yang dapat digunakan sebagai pengganti kondisioner dalam memperbaiki rambut yang rusak karena sampo! Jelaskan jawaban Anda!