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Sobre la estabilidad y adaptabilidad de la fisiología 
humana: la gaussiana se encuentra con distribuciones 
de cola pesada 

Health is defined as the equality of rights of the functions,  
wet–dry, cold–hot, bitter–sweet and the rest;  

but single rule of either pair is deleterious.  
Thus, inequality of power leads to tyranny in  

a political system and disease in the body.  
Greek physician/philosopher Alcmaon of Croton (500 BCE)

Excerpt from G. E. Billman (2013)

Abstract | Recent technological advances allow to monitor in baka non–invasive and con-

tinuous way a wide variety of physiological variables. A surprise of the last few decades 

is that most — if not all — of these variables are always fluctuating, even when the moni-

tored subject is in resting conditions, and the general interpretation is that the statistics 
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of these fluctuations reflect the dynamics of the underlying regulatory mechanisms. The 

objective of the present contribution is to offer an explanation why a large variability may 

be a signature of good health for some variables, e.g., heart rate variability, whereas it is 

interpreted as a risk factor for other variables, like blood pressure variability. Control the-

ory suggests that variables may be classified into 2 categories, depending on the roles 

they play in the regulatory mechanism, and we argue that the statistics of the correspond-

ing time series may reflect these different functions. We illustrate with experimental time 

series that regulated variables, such as blood pressure and core temperature, which are to 

be maintained within a restricted range around a predefined setpoint, correspond to time 

series that obey a normal (Gaussian) distribution with small variability around a represen-

tative average value. On the other hand, effector variables, such as heart rate and skin 

temperature, oppose or adapt to a multitude of perturbations from the environment, and 

we show that the corresponding time series exhibit a large variability and obey heavy–

tailed distributions that may span various scales. With ageing and/or chronic degenera-

tive disease, effector variables lose variability and adaptive capacity and consequently 

regulated variables lose stability and become more variable. Although the above results 

on the variability of time series have been obtained for the specific case of human physi-

ology, they may be applicable as well to other complex dynamical systems where regula-

tory control mechanisms are active. 

Keywords | control theory, homeostasis, continuous monitoring, time series, fractals, com-

plexity, resilience, robustness, stability, adaptability, early–warning signals, loss of com-

plexity hypothesis. 

Resumen | Los avances tecnológicos recientes permiten monitorizar de forma continua y 

no invasiva una amplia variedad de variables fisiológicas. Una sorpresa de las últimas dé-

cadas es que la mayoría si no todas de estas variables siempre fluctúan, incluso cuando el 

sujeto monitoreado se encuentra en condiciones de reposo, y la interpretación general es 

que las estadísticas de estas fluctuaciones reflejan la dinámica de los mecanismos subya-

centes. El objetivo de la presente contribución es ofrecer una explicación de por qué una 

gran variabilidad puede ser una firma de buena salud para algunas variables, por ejemplo, 

la variabilidad de la frecuencia cardíaca, mientras que se interpreta como un factor de 

riesgo para otras variables, por caso, la variabilidad de la presión arterial. La teoría de 

control sugiere que las variables se pueden clasificar en 2 categorías, dependiendo de los 

roles que desempeñan en el mecanismo regulatorio, y argumentamos que las estadísticas 

de las series de tiempo correspondientes pueden reflejar estas funciones diferentes. Ilus-

tramos con series temporales experimentales que las variables reguladas, como la presión 

arterial y la temperatura central, que deben mantenerse dentro de un rango restringido 

alrededor de un punto de ajuste predefinido, corresponden a series temporales que obe-

decen a una distribución normal (gaussiana) con una pequeña variabilidad alrededor de 

un representante valor promedio. Por otro lado, las variables efectoras, como la frecuen-
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cia cardíaca y la temperatura de la piel, se oponen o se adaptan a una multitud de pertur-

baciones del entorno, y mostramos que las series de tiempo correspondientes muestran 

una gran variabilidad y obedecen a las distribuciones de cola pesada que pueden abarcar 

varias escamas. Con el envejecimiento y/o la enfermedad degenerativa crónica, las varia-

bles efectoras pierden variabilidad y capacidad de adaptación y, por consiguiente, las va-

riables reguladas pierden estabilidad y se vuelven más variables. Aunque los resultados 

anteriores sobre la variabilidad de las series de tiempo se han obtenido para el caso espe-

cífico de la fisiología humana, pueden ser aplicables también a otros sistemas dinámicos 

complejos donde los mecanismos de control regulatorio están activos. 

Palabras clave | teoría de control, homeostasis, monitoreo continuo, series temporales, 

fractales, complejidad, resiliencia, robustez, estabilidad, adaptabilidad, señales de alerta 

temprana, hipótesis de pérdida de complejidad. 

Introduction
It can be argued that many — if not most — of the contemporary world problems 
are related to the resilience of complex dynamical systems: we are worried about 
global warming, the globalization of economic markets, the increasing interna-
tional coupling of electrical power grids, the degradation of the environment, 
world population ageing etc., and we would like to predict (and hopefully pre-
vent!) irreversible climate change, global financial crises, massive power black-
outs, mass species extinctions and the ever increasing prevalence of chronic-de-
generative disease (Zolli and Healy 2013). All of the above systems are examples 
of complex systems, consisting of many interconnected components, and where 
typically new systemic properties emerge that are not contained in the local in-
teractions between the individual components (Erdi 2008; Fossion & Zapata–Fon-
seca 2015 y 2018). To study these collective properties, complexity sciences 
have developed a toolkit containing network analysis, data mining, and time–se-
ries analysis and other techniques. One specific example of a collective property 
is resilience, which is not so easy to understand and even more difficult to quan-
tify; it is the antonym of fragility, and it can loosely be understood as the com-
bination of robustness and adaptability to withstand and/or adjust to perturba-
tions from the external environment (Scheffer 2009; Zolli and Healy 2013). 

Human physiology, or the dynamics of human health, is a good example of 
a complex system (Cocho 2015). In the last few years, medical specialists have 
also come to the conclusion that the global health state of the human body, or 
its degeneration, is a systemic property and that some frailty index is needed 
that integrates functional, epidemiological, emotional, cognitive and social as-
pects, which is not an easy task (Rockwood et al. 2005; Fried et al. 2009; Fossion 
2010). Claude Bernard, a French physiologist (1813-1878), noted the remarkable 
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stability of the human body where certain parameters of the internal environ-
ment such as core temperature, blood pressure and body water volume are 
maintained constant and independent from variations in the outside environ-
ment (Bernard, 1878). The American physiologist Walter Cannon (1871-1945) 
identified specialized regulating mechanisms in the human body that react to 
and correct for interior and exterior perturbations and coined the term homeo-
stasis (from the Greek words óμοιος “similar” and στάσις “standing still” to mean 
together “staying similar”) (Cannon 1932). The Jewish–American mathematician 
Norbert Wiener (1894-1964), the Mexican physiologist Arturo Rosenblueth 
(1900-1970) and collaborators developed the field of cybernetics (from κυβερνήτης 
“governor”), the mathematical theory of regulating and communication mecha-
nisms in animals and in machines (Wiener, 1961), which was later incorporated 
into the field of control theory (Tewari 2002; Åström and Murray 2008; Erdi 
2008). Homeostasis is part of Darwinian evolution, does already play a role in 
unicellular lifeforms such as bacteria, and has become increasingly more com-
plex since these single cells clustered together to form multicellular organisms. 
Individual cells floating in the ocean have direct access to nutritional substanc-
es that are more or less homogeneously dissolved into the water. In contrast, 
specialized cells inside of multicellular organisms need distributing and con-
trolling mechanisms to provide nutrients and to carry waste products away; 
these homeostatic mechanisms create a constant internal environment that is 
reminiscent of the primordial ocean and create an independence from the out-
side environment allowing the organism to colonize new habitats (Schulte, 
Kunter and Moeller 2015).

When technological advances first allowed to monitor physiological vari-
ables in a continuous way, it came as a surprise that most — if not all — of these 
variables are always fluctuating, even when the monitored subject is in a resting 
condition, and it is generally accepted that the statistics of these fluctuations in 
some way reflects the dynamics of the underlying regulating processes, al-
though it is not always clear whether these mechanisms are homeostatic or cha-
otic (Goldberger 1991; Goldberger et al. 2002). In some cases, a large variability 
is interpreted as a signature of good health, such as in the case of heart rate 
variability (Malik et al. 1996), whereas in other cases it has been found to repre-
sent a risk factor, such as in the case of blood pressure variability (Parati et al. 
2013). In literature, at least two different frameworks have been proposed to 
explain the phenomenology of the fluctuations of time series of complex dy-
namical systems: (i) the loss of complexity hypothesis of Lipsitz & Goldberger 
(1992) which proposes that complex correlations and variability are character-
istics of health which are increasingly lost with ageing and disease, and (ii) the 
paradigm of early–warning signals which suggests that an increase in the vari-
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ability and correlations of the time series might indicate an impending collapse 
of the dynamical system (Scheffer 2009), and both hypotheses appear to contra-
dict each other. The objective of the present contribution is to explain homeo-
stasis from the point of view of physiological time series, and — inspired by 
control theory — to offer an intuitive explanation for the phenomenology of the 
variability of time series. 

Non–invasive continuous physiological monitoring: time series, 
distributions and dynamics
Physiological variables may exhibit very distinct statistics, depending on the 
specific variable that is being measured and whether the statistics is studied 
over a group of individuals or over time in a single individual. Group–averaged 
biological or medical measures of individuals, such as weight, height, cerebral 
volume, cholesterol levels, blood pressure, pulmonary capacity, intellectual 
quotient, depression levels and personality traits, tend to behave as a normal 
(Gaussian) distribution, 
	                 

– (x – μ)2

	 P (x ) ∝ e   2σ2 	 (1)

and the 2 parameters of mean μ and standard deviation σ are sufficient to cha-
racterize the distribution. Like the normal distribution, exponential functions, 

	 P (x ) ∝ e– λx ,	 (2)

decay rapidly and restrict the variable x to a single specific scale around the ave-
rage of the distribution. Additional parameters such as skewness and kurtosis 
have been introduced to describe deviations from the normal distribution (Lane 
2013; Fossion et al. 2013). Other variables, however, have distributions with 
long/heavy tails that may span various orders of magnitude such that single–
scale parameters such as the above are not meaningful to describe the distribu-
tion, and the data may behave in a fractal way (Liebovitch, Scheurle 2000).  One 
example of a heavy–tailed distribution is the lognormal distribution as in the 
case of the incubation time of infectious diseases; here, log–transformed varia-
bles can be studied, which by definition behave Gaussian (Limpert, Stahel and 
Abbt 2001)., i.e., 
	                   

–  (log x – μ)2

	 P (log x ) ∝ e      2σ2    .	 (3)

Another example of a heavy–tailed distribution are power laws, 
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1	 P (x ) ∝       	 (4)

	 x β

such as the time evolution of acidity of the oesophagus or the stomach in indi-
vidual subjects (Gardner et al. 2004). A visual way to distinguish between these 
different distributions is by plotting the data in different scales (figure 1). Both 
exponential functions and power laws appear as curves in a linear–linear scale. 
Exponential functions behave linearly when represented in a linear–logarithmic 
scale, i.e., log[P (x )] ∝ –λ x. Power laws behave linearly in a double–logarithmic 
scale, i.e., log[P (x )] ∝ –β log(x ). Typical for normal or exponential distributions 
is their rapid decay, such that they are restricted to a single scale and the ave-
rage and the standard deviation are representative for the whole distribution, 
whereas heavy–tailed distributions such as log–normals or power laws decay 
more slowly, may span various scales, and there is no single characteristic value 
for the distribution. 

Figure 1. Examples of common probability distribution functions.

Note: Linear P( x ) ∝ –m x (black curve), Gaussian/normal P( x ) ∝ exp[–( x – μ1)
2/(2σ1

2)] (red shaded curve), 
exponential P( x ) ∝ exp(–λ) (orange shaded curve), lognormal P[log( x )] ∝ exp[–(log( x ) – μ1)

2/(2σ1
2)] (blue 

dashed curve) and power law P( x ) ∝ 1/xα (purple dashed curve). Shown in (a) linear–linear scale, (b) 
logarithmic–linear scale, (c) linear–logarithmic scale and (d) logarithmic–logarithmic scale. (2010). Para-
meters used here are: m = 0.0025, μ1 = 30, σ = 8, λ = 0.1, μ2 = 3, σ2 = 0.75 and α = 1.
Source: Created by the authors based on Kello et al. (2010). 

(a) lin–lin (b) log–lin 

(c) lin–log (d) log–log 
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In the present contribution, we are interested in the statistical properties 
of data of the non–invasive continuous monitoring of physiological variables, 
i.e., time series, which are thought to reflect the dynamics of the underlying 
regulating mechanisms (Goldberger 1991; Goldberger et al. 2002). Measure-
ment devices capable of continuous physiological monitoring are becoming 
ubiquitous, not only in the specialized medical world (figure 2), but also in the 
consumer market with a wide variety of fitness trackers, smartphones, smart-
watches and dedicated applets for data collection, analysis and visualization 
(see panels (a) and (b) of figure 3), and allow to monitor a wide variety of phys-
iological variables, such as, e.g., blood oxygen saturation (SpO2) (Chaudhary et 
al. 1998), blood glucose (Churruca et al. 2008), gastro–oesophageal acidity 
(Gardner et al. 2005), brain signals (Garrett et al. 2013), gait (Hausdorff 2005), 
heart rate (Malik et al. 1996), blood pressure (Parati et al. 2013), breathing (Pa-
paioannou, Pneumatikos 2012), skin temperature (Varela et al. 2005; Fossion et 
al. 2017a), core body temperature (Kelly, 2006a y 2006b), electrodermal activi-
ty (Visnovcova et al. 2016), equilibrium and balance function (Yamagata et al. 
2017) and physical activity (actigraphy) (Ivanov et al. 2007; Hu et al. 2009a y 
2009b; Fossion et al. 2017b). 

The most obvious way to evaluate physiological time series is in response 
to particular conditions or stimuli. Panel (c) of figure 3 shows the example of the 
stressful event of giving a talk in public during a congress. Heart rate in rest in 
a healthy young adult, either lying supine or sitting, should be in the range 60-
100 beats per minute (bpm); heart rate <60 bpm is called bradycardia and the 
blood circulation is not sufficient to carry about nutrients through the whole 
body; heart rate >100 bpm in rest is called tachycardia and can be dangerous if 
chronic, on the other hand, a temporal rise in heart rate because of acute stress 
is part of the normal physiological response. Here, it can be seen that already 
before the beginning of the talk heart rate was high and close to tachycardia in 
nervous anticipation; heart rate rose with +20 bpm immediately at the start of 
the talk, relaxed for a moment with –30 bpm at the end of the talk but rose again 
with +20 bmp at the start of the questions, and relaxed with the large amount of 
–60 bpm immediately after both talk and questions had finished and the subject 
could take his seat again off stage. Sweating is also part of the stress response, 
but in the present case it is delayed with respect to the heart rate response, 
starting when the talk was already halfway and only diminishing after the talk 
had already ended; there is also a certain correlation with skin temperature, 
where stress induces lower temperatures and relaxation is associated to higher 
temperatures (because of vasoconstriction and vasodilatation, respectively, see 
forward example 2: Body temperature homeostasis). 
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Figure 2. Specialized monitoring equipment. 

Note: (a) ambulatory blood pressure monitoring device CONTEC ABPM50, (b) continuous temperature mo-
nitoring device Maxim Thermochron iButton DS1922L (“Thermochron8k”).
Source: Reproduced from the commercial webpages of (a) CONTEC Medical Systems Co. Ltd. (http://www.
contecmed.com) and (b) Maxim Integrated (https://www.maximintegrated.com/en.html).

(a) ABPM50 (b) Thermochron iButton

Figure 3. Commercial smartwatch BASIS Peak. 

(a) smartwatch (front side)

(b) smartwatch (back side) (c) physiological monitoring

Note: Shown are (a) front side of the watch with the time display, (b) back side of watch with the sensors, 
(c) continuous monitoring of a healthy young adult during the stressful event of giving a talk in public with 
physiological time series of heart rate (units bpm, red curve), skin temperature T (units in °C, dark blue 
curve), sweating (units gsr, light grey–blue curve), walking step rate (units in steps/min, green curve) and 
total (rest+active) calorie burning rate (kCal/min, orange curve), sample rate is f = 1/min.
Source: (a, b) Reproduced from the commercial webpage of BASIS Peak that was sadly discontinued by the 
end of December 2016; (c) created by the authors. 
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When monitoring is realized over various hours or even successive days, it 
may not be possible to correlate the behaviour of each specific detail of the time 
series with a particular event. On the other hand, the statistics of the time series 
should reflect the physiological responses to the stimuli received during the 
monitoring period, and specialized techniques from time-series analysis can be 
applied to quantify many different aspects of the statistics. Figure 4 shows the 
continuous monitoring of heart rate, skin temperature, sweating and step rate 
over 3 different time spans. At the time scale of 24 hours, see panel (a), there is 
an obvious difference between day and night, where during the day heart rate is 
higher (because of physical activity) and skin temperature tends to be lower (be-
cause of vasoconstriction), whereas during the night heart rate is lower (be-
cause of rest) and skin temperature tends to be higher (because of vasodilata-
tion). Apart from these overall features, all variables show rapid fluctuations 
that reflect physiological responses to many different stimuli. The behaviour is 
not regular or predictable, and there are correlations in the time series that in 
principle may be used to quantify the health state of the corresponding physio-
logical mechanism. At the time scale of 2 weeks, see panel (b), heart rate and 
step rate show the physiological response to the periodic alternation of day and 
night, called a circadian cycle; this periodicity is also present in skin tempera-
ture, although somewhat less clearly, but does not appear to be present in the 
sweating time series. At the time scale of 1 year, see panel (c), all patterns seem 
to be lost, and the time series of all variables appears to be featureless white 
noise (i.e., a random time series without correlations). 

Figure 5 shows a Fourier spectral analysis of 1 year of the heart rate data of 
figure 4(c), where the whole time series is decomposed as the sum of periodic 
components with different frequencies f and where according to the Parsival 
theorem,
	   fmax
	 σ2 = �       P (f  ) df	 (5)
	 fmin 

each component with frequency f is responsible for a partial variance P(f) of the 
total variance σ2 of the original time series (Zapata–Fonseca et al. 2016; Fossion 
et al. 2017b). Spectral analysis is one way to quantify several of the aspects of 
the time series that we observed using visual inspection in the previous paragra-
ph. Panel (a) shows the Fourier power spectrum, where the components have 
been ordered according to frequency f and the power spectrum is represented in 
double logarithmic scale. There is a dominant peak at f = 1/day (and higher har-
monics f = 2/day, 4/day, etc.), at least 2 orders of magnitude larger whatever 
other component of the power spectrum, and it corresponds to the circadian 
rhythm. There is another, but less dominant, peak at f = 1/week, corresponding 
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to the periodic rhythm of the week–weekend cycle. There appear to be 2 different 
scaling regions, one at infradian scales, 1/year < f < 1/day, which behaves as a 
power law P (f  ) ∝ 1/f  β with β = 0, and is suggestive of white noise, and another 
scaling region at ultradian scales, f > 1/day, which behaves as a power law with 
β = 1, and might indicate random but complex correlations (1/f noise). Fourier 
power spectra of experimental time series can be quite noisy and it might not be 
straightforward to realize a linear fit in log–log scale to extract the power-law ex-
ponent β. A useful alternative is to represent the results of the spectral analysis 
in a so–called scree diagram or Zipf plot P (k ), see panel (b), where the compo-
nents are ordered according to magnitude, and the graph is usually represented 
in double logarithmic scale. Here also, the dominant components to the left–
hand side tend to correspond to large time scales (small frequencies), and the 
less dominant components to the right–hand side tend to correspond to small 
time scales (high frequencies). The “steps” at the dominant side of the scree dia-
gram indicate periodicities; at least 2 steps are visible, the first one corresponds 
to the circadian cycle and the second one to a higher harmonic. The linear parts 
of the scree diagram in log–log scale correspond to power laws, with similar be-
haviour as in the power spectrum representation, but now with less dispersion.

Let us now compare the statistics of different physiological variables. Figure 
6(a) compares the Fourier scree diagrams for heart rate, skin temperature, 
sweating and steps. The steeper slope of the scree diagrams of heart rate and 
skin temperature suggests the presence of strong correlations, whereas the al-
most flat behaviour of the scree diagrams of steps and sweating is suggestive of 
an almost absence of correlations at most time scales. Figure 6(b) shows the 
probability distribution of the fluctuations X’ of time series X around its average 
μ and expressed as a percentage of μ,
	

X – μ
	 X ́ = 100 ——— 	 (6)
	

μ

for heart rate, skin temperature and step rate. These variables are characterized 
by very different probability distributions. Skin temperature corresponds to a 
narrow probability distribution with small fluctuations around the mean. Heart 
rate corresponds to a very asymmetric distribution with a tail towards large 
heart rate accelerations. Step rate corresponds to a wide Gaussian distribution 
and large fluctuations around the mean. 

The previous paragraphs have illustrated that the phenomenology of phys-
iological time series is very rich, depending on the specific variable and on the 
particular time scales that are studied. The rest of the present contribution will 
be dedicated to explore the general patterns that may explain part of this phe-
nomenology.
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Figure 4. Non–invasive and continuous physiological monitoring by the commercial smartwatch BA-
SIS Peak for periods. 

Note: Peak of periods of (a) 24h (with vertical gridlines at 1h intervals), (b) 2 weeks (with vertical gridlines 
at 24h intervals), (c) 1 year (with vertical gridlines at 1 month intervals). Units, colours, variables and sam-
ple rate as explained in figure 3. 
Source: Created by the authors. 

(a)	time span   
	 of 24 h. 

(b)	time span   
	 of 2 weeks. 

(c)	 time span   
	 of 1 year. 



66

D
O
S
IE

R D
O
S
IE

R

Volumen 8, número 20, (55-81), enero–abril 2020
doi: http://dx.doi.org/10.22201/ceiich.24485705e.2020.20.71195 
Ruben Fossion, Ariel Sáenz–Burrola, Leonardo Zapata–Fonseca

www.interdisciplina.unam.mx
INTERdisciplina

Time–series analysis to explore the dynamics of homeostatic 
regulation mechanisms
Living organisms in general, and animals in particular, are embedded in two en-
vironments: an internal and an external one. Claude Bernard proposed the cons-
tancy of the internal environment as a means for the organism to gain indepen-
dence from the external environment. These notions, although they might 
suggest a static description of life, are quite the opposite. Cannon proposed that 
living organisms are constantly adapting to perturbations from the external and 

Figure 5. Fourier spectral analysis of the 1–year heart rate (HR) time series of figure 4(c). 

Note: Represented as (a) power spectrum with components ordered according to frequency, and (b) scree 
diagram with components ordered according to magnitude. Frequency in units of number of oscillations 
during the whole time series. 
Source: Created by the authors. 

(a) Power spectrum. (b) Scree diagram.

Figure 6. Statistics of 1–year time series of the variables of figure 4(c). 

Note: (a) Scree diagram of Fourier spectral analysis, P ( k ), and (b) probability distribution P ( X ́ ) of fluctua-
tions. X ́  according to eq. (6). Units, colours, variables and sample rate as explained in figure 3. 
Source: Created by the authors. 

(a) Power spectrum. (b) Probability distributions.
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the internal environment, at different temporal and spatial scales, to preserve 
the property of being alive (Boron & Boulpaep 2012). This multi–scale character 
is characteristic for human physiology, as well as in the misbehaviour of it, i.e., 
human pathology. For instance, the human body comprises different organ sys-
tems, which in turn are composed of individual organs made of tissues, defined 
as conglomerates of specialised cells. At an even smaller level, the cells also 
show hierarchical organisation ranging from subcellular structures to the very 
basic molecules that conform the genome. Therefore, clinical medicine has deve-
loped many areas of specialisation for studying the different elements of this 
complex physiological system. However, the human body is anything but frag-
mented. It is rather an integrated living system, in which regulatory process are 
continuously exchanging information across many levels, and it is precisely 
when such interactions are disrupted that disease is brought forth. The dynamics 
of these homeostatic regulatory processes have been thoroughly studied by phy-
siologists and it is a concept present in the everyday medical practice. For exam-
ple, a common way for assessing the integrity of the human body functioning are 
the so–called vital signs, which are proxies of the physiological state of the vital 
parameters controlled by different homeostatic mechanisms. Consistent with the 
different scales that were mentioned before, homeostasis can also occur at diffe-
rent levels. At the largest scale (the whole body), one of the most important regu-
lation are those of the blood volume and blood pressure, both vital parameters. 
Otherwise, the blood would not reach all the tissues of all the organs and sys-
tems, leading to a state of shock, clinically defined as a life–threatening condition 
that occurs when the body is not getting enough blood flow. Such lack of blood 
flow implies a reduction of the homeostatic supply of the oxygen and nutrients, 
components that all tissues from all the organs and systems require for functio-
ning properly (Boron & Boulpaep 2012). Another scale of analysis is the one that 
Bernard called the internal environment (currently known as the extracellular 
fluid). Here, the tightly controlled vital parameters include: body core tempera-
ture; plasma levels of oxygen, glucose, potassium ions, calcium ions, and hydro-
gen ions (Boron & Boulpaep 2012). At the microscopic level (the single cell), ho-
meostatic processes are also constantly happening, such as the regulation of the 
intra-cellular volume, and the concentration of many inorganic ions (e.g. Na+, 
Ca2+, H+), and energy levels (e.g. ATP) (Boron & Boulpaep 2012).

According to control theory and physiology, physiological variables that 
participate in homeostatic regulatory mechanisms can be divided into 2 types, 
see table 1 and figures 7 & 9 and the corresponding references. Regulated vari-
ables, such as blood pressure and core body temperature, are to be maintained 
within a restricted range around a predefined setpoint. Effector variables and 
the corresponding physiological responses, such as heart rate and skin tempera-
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ture, adapt to or oppose perturbations from the environment aiming to main-
tain the regulated variables as constant as possible. The main anatomical differ-
ence between both types of variables is that the regulated variables have their 
own specialized sensors that measure at each time point the value of that vari-
able x and the error signal of the deviation from the setpoint e (t ) = x (t )–x 0 which 
activates physiological responses from the effector variables if the error e (t ) 
grows to large. Effector variables, on the other hand, do not have specialized 
sensors that participate in the control mechanism. In the following, we will il-
lustrate the dynamics of blood pressure homeostasis and body temperature ho-
meostasis using time series of the associated variables.

Example 1: Blood pressure homeostasis
From the homeostatic standpoint, blood pressure (henceforth, BP) is an example 
of a controlled variable which must be maintained within a restricted range of 
values near a setpoint of 120 mmHg (for the systolic BP), and 80mmHg (for the 
diastolic BP). Blood pressure is one of the so–called vital signs given that its ade-
quate regulation is mandatory for proper organ perfusion (amount of oxygen de-
livered to the tissues). Blood pressure is defined as the force of the blood against 
the walls of the arteries. Importantly, blood volume (intravascular liquid) is cru-
cial for such pressure to exist. Additionally, the heart is responsible for pumping 

Table 1. Homeostatic regulation mechanisms consist of a regulated variable that is to be maintained 
within a restricted range around a setpoint and one or more effector variables that oppose perturbations 
from the environment.

Homeostatic
mechanism

Regulated 
variable 

Normal  
range/value 

Sensor 
(location)

Control 
centre  

(location)
effectors Effector 

response

Blood  
pressure  

homeostasis

Systolic 
blood  

pressure 
(SBP) & 
diastolic 

blood  
pressure 

(DBP)

90-120 
mmHg (SBP)

60-80 
mmHg (DBP) 

Mechano-
sensors 
(carotid 

sinus and 
aortic arch)

medulla Heart
Blood  

vessels

Heart rate, 
peripheral 
resistance, 

stroke  
volume, 
cardiac  

contractility

Body  
emperature 

homeostasis

Core body 
temperature

36–37.5°C Thermosen-
sor

(hypothala-
mus)

hypothala-
mus

Blood  
vessels, 

sweat 
glands, 
skeletal 
muscles

Peripheral 
resistance, 
sweating 

rate,  
shivering

Source: Created by the authors based on Model et al. (2015) and Fossion et al. (2018a, 2018b). 
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the blood through the network of vessels in such a way that the exerted force of 
the blood against the walls of the vessels is sufficient for blood pressure to be 
tightly controlled. Moreover, arterial vessels are constantly adjusting their dia-
meter to maintain the blood pressure under control, and ultimately supply the 
organs with adequate amounts of blood; therefore, vasoconstriction and vasodi-
lation are dynamical mechanisms that also play a crucial role for the regulation 
of blood pressure. The regulatory mechanism of blood pressure and volume has 
different components that act at different time scales and through different mo-
dalities (Boron & Boulpaep 2012; Clancy & McVicar 2013), (figure 7). 

•	 Short–term (seconds to minutes): there are specialized mechanoreceptors in 
the carotid sinus and aortic arch, called baroreceptors, that are sensitive to 
the stretching of the walls of the blood vessels. When stimulated (usually by 
a blood pressure increase or decrease), they send a signal via nerves of the 
autonomous nervous system (ANS) to the brainstem, where a neuronal inte-
gration process is carried out to elicit by neural activity (electrical pulses) a 
proper response to the effector organs (heart, vessels and adrenal medulla). 

Figure 7. Blood pressure homeostatic control loop or barostat. 

Note: The control centrum is located in the central nervous system (CNS) which passes commands through 
the sympathetic (SNS) and parasympathetic (PNS) branches of the autonomous nervous system (ANS) to 
the effector variables (and the corresponding physiological responses) such as cardiac contractility (stroke 
volume, SV), sinus node (heart rate, HR) and vasomotor activity (total peripheral resistance, TPR), which 
act together to maintain blood pressure (BP) in a restricted homeostatic range around the setpoint as mea-
sured by the baroreceptor. Continuous lines are excitatory and dashed lines are inhibitory. 
Source: Created by the authors based on Fossion et al. (2018a, 2018b), Billman (2013) and Modell et al. (2015). 
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•	 Intermediate and long–term (hours to days): regulated via humoral pathways 
that targets either arteries and veins to modulate the vasomotor tone (using 
vasoactive hormones), or the kidneys to modulate the extracellular fluid vo-
lume that produces proportional changes in the intravascular volume 
(using non-vasoactive hormones).

Heart rate time series can be obtained easily, using whatever electronic 
electrocardiogram (ECG). Blood pressure is more difficult to measure, at least 
non–invasively and in a continuous way. One method is an ambulatory blood 
pressure measurement device, such as the CONTEC ABPM50 (figure 2(a)), con-
sisting of an arm cuff which inflates at periodic time intervals to make a mea-
surement of blood pressure (BP) and heart rate (HR). Both systolic blood pres-
sure (SBP), the maximum blood pressure just after a heartbeat, and diastolic 
blood pressure (DBP), the minimum blood pressure just before a new heartbeat, 
are measured. Arterial blood pressure and heart rate were monitored continu-
ously, every 15min over 8 successive days, in a healthy male young adult (38yo). 
Resulting time series and corresponding statistics are shown in figure 8. The 
time series of panel (a) show that both heart rate and blood pressure are char-
acterized by a circadian response to the day–night cycle, with higher values for 
heart rate and blood pressure during the day than during the night. Blood pres-
sure appears to fluctuate around a specific setpoint during the day and around 
another setpoint during the night. For heart rate, there could be a resting–state 
average value, apparent especially during night–time, but during the day there 
does not seem to be a representative value. Panels (b) and (c) show the proba-
bility density distributions for the fluctuations according to Eq. (6). Blood pres-
sure would seem to correspond with a superposition of 2 Gaussian distribu-
tions, corresponding to small fluctuations around the day and night setpoints. 
On the other hand, heart rate might correspond to a Gaussian distribution at 
low values, corresponding to small fluctuations around the resting-state heart 
rate, but at higher values it corresponds to a heavy–tailed distribution with 
large fluctuations and no single representative value. Panel (d) shows the scree 
diagram of a spectral analysis according to the method of singular spectrum 
analysis (SSA), for technical details see Fossion et al. (2017b). Blood pressure 
has distinguishable 24 h and 12 h periodic components which are responsible 
for the major part of the variance of the time series, whereas ultradian fluctua-
tions are less important by 1 order of magnitude. Heart rate only has a 24 h pe-
riodic component, fluctuations take up an important part of the variance of the 
original time series and are much more important than in the case of blood 
pressure. Fluctuations of both variables would seem to follow an approximate 
1/f power law.
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Example 2: Body temperature homeostasis
Humans are a homeotherms species so its body temperature does not depend on 
the environmental temperature. Rather it relies on a tight controlled mechanism 
that considers the internal chemical reactions, as well as the environmental condi-
tions. Body temperature refers to the core temperature (internal) and under healthy 
conditions it ranges from 36 ºC to 37.5 ºC. This controlled variable depends on 
many factors, from which the most important are thermoregulatory network in the 
central nervous system (CNS) (circadian rhythm, etc.) and the metabolic rate (aging, 
etc.). Core body temperature is the result of the sensitive balance between heat 
production and heat elimination (Boron & Boulpaep 2012), (figure 9). 

Figure 8. Continuous monitoring of heart rate HR (red curve) and systolic blood pressure SBP (orange 
curve, shaded) over 8 successive days using the ambulatory blood pressure monitor CONTEC ABPM50. 

Note: Shown are: (a) time series using a 1/15 min sample rate, vertical gridlines at midnight, (b) probability 
distribution of fluctuations according to Eq. (6) in linear–linear scale, (c) probability distribution of fluc-
tuations according to Eq. (6) in double–logarithmic scale and (d) SSA scree diagram of ordered fractional 
partial variances λk/λtot.
Source: Created by the authors.

(a) Time series.

(b) Probability distribution (lin).

(c) Probability distribution (log).

(d) Scree diagram.
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•	 Heat production (thermogenesis): the inefficiency of chemical reactions 
in the body (losing some energy of the reaction, mostly in the form of 
heat) relates the two concepts of energy consumption or metabolic rate 
on the one hand, and heat production on the other hand. These two con-
tributions vary a lot throughout age, different moments of the day, du-
ring exercise, etc. The resting metabolic rate (RMR) is the energy con-
sumption necessary to maintain the basal functions of resting cells, as 
well as the activity of the cardiac and respiratory muscles that are neces-
sary for the survival of the organism. On top of the RMR all the energy 
consumption adds up (exercise, age, circadian phase, habitat, phylogeny, 
etc.) consequently building the overall metabolic heat production.

•	 Heat elimination (thermolysis): the metabolic heat production is rather 
variable and sometimes it can be too high (as in extreme exercise) such 
that the human body needs to dissipate the excess of heat preventing 
noxious states as hyperthermia and heat stroke. The way in which the 
body dissipates the core heat is by transporting it to the skin so that it 

Figure 9. Body temperature homeostatic control loop or thermostat. 

Note: Skin and visceral neurons act as thermoreceptors and carry the information of the internal and external 
temperature to the preoptic anterior hypothalamus (POAH) which passes commands through the sympathetic 
(SNS) and parasympathetic (PNS) branches of the autonomous nervous system (ANS) to the effector compo-
nents to produce (thermogenesis) or eliminate heat (thermolysis) such as sweat glands, blood vessels, brown 
adipose tissue and skeletal muscle. All these modulate the production and transfer of heat by constantly inte-
racting with the internal and external environments.
Source: Created by the authors based on Fossion et al. (2018a, 2018b), Billman (2013) and Modell et al. (2015).
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can be transferred to the environment by various mechanisms (radiation, 
convection, evaporation and conduction). Such heat movement requires 
the activity of both blood and blood vessels. The former collects the heat 
from all around the body by convection, whereas the latter conduct the 
warm blood to the skin and radiation to the environment can be con-
trolled by modifying their diameter through the ANS activity. 

Skin temperature is monitored easily, where a measuring device such as the 
Thermochron iButton of figure 2(b) can be fixed to the skin using medical tape; core 
temperature on the other hand is more difficult to measure and the measurement 
device must be introduced into a body orifice. Core temperature and skin tempera-
ture were monitored continuously, every 3 min over 7 successive days, in a healthy 
male young adult (38yo), measuring anal temperature and skin temperature at the 
wrist. Time series and corresponding statistics are shown in figure 10. The time se-
ries of panel (a) show that both core and skin temperature are characterized by a 
circadian response to the day–night cycle, with core temperature being higher and 
skin temperature being lower during the day (when vasoconstriction predominates), 
and vice versa during the night (when vasodilatation predominates). Core tempera-
ture would seem to fluctuate around some constant value during the day and around 
another value during the night, called the day and night setpoints. On the other 
hand, for skin temperature, only during the night there would seem to be an average 
value around which skin temperature fluctuates, whereas during the day there 
would not seem to be a representative value. Panels (b) and (c) show the probability 
density distributions for the fluctuations according to Eq. (6). Core temperature 
would seem to correspond with a superposition of 2 narrow normal distributions, 
corresponding to small fluctuations around a night setpoint and small fluctuations 
around a day setpoint. On the other hand, skin temperature appears to follow a 
broad normal distribution at high values, corresponding to fluctuations around a 
night–time average value, but at lower values it corresponds to a heavy–tailed dis-
tribution with large excursions to low temperatures. Panel (d) shows the scree dia-
gram of a spectral analysis SSA (Fossion et al. 2017b). There is a clear circadian com-
ponent in core temperature, which is somewhat less dominant for skin temperature. 
Ultradian fluctuations are 1 order of magnitude smaller than the circadian compo-
nent for core temperature, but are of comparable intensity for skin temperature, 
which means that the fluctuations hardly contribute to the variance of core tempera-
ture, whereas they constitute the major part of the variance of skin temperature. 
There appear to be 2 scaling regions for the ultradian components, with a power law 
P (k ) ∝ 1/k γ with γ ≈ 1 at larger ultradian scales 0.5 < log(k ) < 1.5, both for core and 
skin temperature, and another power law at smaller ultradian scales log(k ) > 1.5, 
with γ ≈ 2 for skin temperature and γ ≈ 4 for core temperature. 
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Discussion
Regulated and effector variables play very different roles in homeostatic regula-
tion (table 1). Negative feedback loops act to maintain regulated variables (such 
as blood pressure and core temperature) as close as possible to a predefined se-
tpoint, whereas effector variables and the associated physiological responses 
(such as heart rate and skin temperature) serve to correct for perturbations 
from the environment. 

Using physiological time series of a healthy young adult corresponding to 
blood pressure homeostasis and body temperature homeostasis, we have illus-
trated that “static” statistical properties such as the probability distribution of 

Figure 10. Continuous monitoring of skin temperature (purple curve) and core temperature (purple 
curve, shaded) over 8 successive days using the Thermochron iButton. 

Note: Shown are: (a) time series sampled at 1/3 min; (b) probability distribution of fluctuations according to Eq. 
(6) in linear–linear scale, and, (c) probability distribution of fluctuations according to Eq. (6) in double–logarith-
mic scale, and (d) SSA scree diagram of ordered fractional partial variances λk/λtot.
Source: Created by the authors.

(b) Probability distribution (lin).

(a) Time series.

(c) Probability distribution (log).

(d) Scree diagram. 
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the fluctuations of the time series reflect these different roles in the homeostatic 
regulatory mechanisms. Regulated variables are characterized by a Gaussian dis-
tribution, which describes small fluctuations of one single scale (of the order of 
a standard deviation) around a representative average value, which makes sense 
for a variable that is to be maintained in a restricted range around a setpoint. Ef-
fector variables and physiological responses, on the other hand, are character-
ized by heavy–tailed distributions with large fluctuations, which possibly reflect 
the wide range of physiological responses to adapt to perturbations from the 
outer environment. Although the effector variables are not controlled directly by 
the homeostatic regulatory mechanism, their dynamics does not appear to be 
without correlations, and we speculate that they may be self–organized, which is 
a process where some overall order arises from the local interactions between 
the parts of the complex system, and/or exhibit self–organized criticality, which 
is a property of dynamical systems that have a critical point as an attractor, and 
which is considered to be one of the mechanisms by which complexity arises in 
Nature (Bak 1996; Muñoz 2017). There is indeed evidence that heart rate might 
be self–organized to converge continually to a critical state that constitutes an 
intricate balance between the antagonistic activity of the sympathetic and para-
sympathetic nervous systems (Kiyono et al. 2004; Struzik et al. 2004; Kiyono et 
al. 2005). In scientific divulgations, homeostasis is sometimes described as a 
“zen–like property of constancy through change” (Sapolsky 2004), and the re-
sults presented in the present contribution suggest that this statement does not 
need to be taken philosophically, but can be interpreted in a literal way, where 
the regulated variables define in some way the stability of an organism and the 
effector variables its adaptability, and both properties are necessary for an or-
ganism to be resilient or non–frail. On the other hand, in the previous contribu-
tion Fossion et al. (2018a, 2018b), we have demonstrated that with ageing and 
chronic degenerative disease, homeostatic control mechanisms may degenerate, 
such that effector variables lose adaptive capacity and their time series become 
less variable, corresponding to the loss of complexity hypothesis, and conse-
quently regulated variables get out of control and become more variable, corre-
sponding to the paradigm of early–warning signals (table 2). 

Also, the “dynamical” statistical properties of a time series can be studied, 
e.g., using spectral analysis with Fourier or SSA. The study of the relation be-
tween the fractal properties of a time series and the type of control of homeo-
static regulatory mechanisms is the topic of, e.g., West (2009), where the ad-
vanced technique of fractional calculus is employed. In young healthy subjects, 
in the case of multi–day time series, the dominant component is the periodic 
circadian cycle which reflects the physiological response to the single dominant 
stimulus that exists at that time scale which is the alternation of day and night. 
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At ultradian scales, partial variances of time series components seem to scale 
according to a power law, see Eq. (4), meaning that the behaviour is fractal in 
time. The interpretation may be that at time scales of < 24h many different stim-
uli coexist where each stimulus requires a specific physiological response, and 
all these responses may go in different directions, resulting in a time series 
where it is not possibly to identify individual components with a specific time 
scale, but a fractal time series where all these time scales coexist. It is possible 
that the power law exponent reflects certain properties of the specific control 
mechanism at play. In the case of blood pressure homeostasis of figure 8(d), 
both heart rate and blood pressure would seem to correspond approximately to 
a 1/f power law (γ ≈ 1) at all ultradian time scales, which might indicate that in 
this case the same control mechanisms play a role at all these time scales. In the 
case of body temperature homeostasis of figure 10(d), skin temperature and 
core temperature would seem to correspond to a 1/f power law (γ ≈ 1) only a 
larger ultradian scales, whereas at smaller ultradian scales the slope of the pow-
er law would seem to become much steeper, with γ ≈ 2 for skin temperature and 
γ ≈ 4 for core temperature, which might indicate that different control mecha-
nisms play a role at longer and shorter time scales, and that these are different 
for core and skin temperature. The spectral exponent β or γ of the power law 
quantifies the intensity of the correlations present in the time series and may 
reflect the strength of the control of the underlying regulatory mechanism, 
where γ ≈ 0 would correspond to white noise or absence of control and γ ≈ ∞ to 
a periodic cycle or absolute control. 

Table 2. Intuitive interpretation of the variability of physiological variables depending on the role they play 
in the homeostatic regulatory mechanisms. 

Type of variable Regulated variable Effector variable

Synonyms Directly controlled Indirectly controlled, regulating
self–organized

Statistics
in optimal conditions

Normal distribution
Small variance

Heavy–tailed distribution
Large variance

Statistics
in adverse conditions

Deviations from normality
Increased variance
Increased memory

Increased correlations
Critical slowing down

Increased normality
Decreased variance

Theoretical paradigm Early-warning signals 
(Scheffer 2009)

Loss of complexity 
(Lipsitz & Goldberger 1992)

Self-organized criticality 
(Bak 1996; Muñoz 2017)

Source: Created by the authors. 
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Conclusion
One of the great present–day scientific challenges is to quantify the resilience or 
fragility of complex dynamical systems and to predict a possible collapse. Espe-
cially in the context of population ageing and the growing prevalence of chron-
ic degenerative disease, an adequate quantification of the global health state of 
a person is a pre–requisite to move from a curative to a preventive medicine. 
One of the challenges is how to quantify “systemic” properties that emerge from 
and are not contained in the properties of the individual components, for which 
the time–series analysis of some of the key variables associated to the complex 
system might offer a solution. One of the unsolved questions in time–series 
analysis is why in some cases variability is an indicator of good health whereas 
in other cases it can be interpreted as a risk factor. Also, in literature, frame-
works that have been proposed to explain the phenomenology of time series of 
complex systems, such as the loss of complexity hypothesis and self–organized 
criticality on the one hand, and the paradigm of early–warning signals on the 
other hand, are in apparent contradiction. In the present contribution, we were 
inspired by control theory and physiology, to distinguish between regulated 
and effector variables, that play very distinct roles in homeostatic regulatory 
mechanisms. Using experimental time series, we showed that regulated vari-
ables such as blood pressure and core body temperature obey Gaussian statis-
tics with small fluctuations around a representative average value, which is 
compatible with their physiological role of regulation within a restricted range 
around a setpoint, whereas effector variables such as heart rate and skin tem-
perature obey distributions with heavy tails and large fluctuations that span 
various scales, which may be associated with the wide range of physiological 
responses that adapt to or oppose perturbations from the environment with the 
objective to maintain the regulated variables as constant as possible. Excep-
tions to the above rules may be resting conditions with a minimum of stimuli 
where effector variables and the associated physiological responses also may 
fluctuate around a characteristic resting value according to a Gaussian distribu-
tion, and the single dominant stimulus of the alternation of day and night which 
induces a periodic cycle in both regulated and effector variables. Regulated vari-
ables may represent the stability properties of a complex dynamical system, 
and effector variables the adaptive properties, which together constitute the re-
silience of the system. Although the above results were derived for physiology, 
they might be applicable in general to dynamical complex systems where regu-
latory mechanisms are at work. 
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