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Resumen

Los momentos geométricos tridimensionales son rasgos importantes para el
reconocimiento de objetos 3-D y la descripcion de forma. El calculo de estos rasgos
en el caso 3-D mediante el nétodo tradicional requiere de una gran namero de
operaciones. Varios autores han propuesto métodos para su calculo. La mayoria
requieren computos de orden N3, suponiendo que el objeto es representado como
uan imagen voxelizada de N" NN elementos. Recientemente, Yang et al. (1996),
presenta un método quequiere el calculo de O(NZ) al usar el teorema discreto de la
divergencia que permite calcular la suma de una funcion para una region discreta
n-dimensional mediante la suma sobre una regién discreta encerrando al objeto. En
este articulo presentamos un nuevo método para el calculo de momentos 3-D. Para
esto, primeramente descomponemos una regiéon en un conjunto de cubos. Esta
descomposicion forma una particion. Las sumatorias triples usadas en el calculo de
los momentos son reemplazadas por la suma de los momentos de cada cubo de la
particion. Los momentos de cada cubo pueden ser calculados en términos de un
conjunto muy sencillo de expresiones usando el centro del cubo y su radio.
Mostramos que una vez que la particién ha sido obtenida, el calculo de los
momentos al uar la propuesta es mucho mas rapida que la proporcionada por
métodos anteriores; lacomplejidad de la propuesta e de O(N). También mostramos
vario ejemplos donde los momentos derivados pueden res usados en el calculo de
invariantes para el reconocimiento de objetos tridimensionales.

Descriptores: Momentos tridimensionales, calculo de momentos geomeétricos,
rasgos invariantes, reconocimiento de objetos.

Abstract
Three-dimensional Car te sian geo met ric mo mentsare im por tant fea turesfor 3-D ob ject rec
og ni tion and shape de scrip tion. Com puting these fea tures in the 3-D case by a straight for-
ward method re quires a large num ber of op er ations. Sev eral au thors have pro posed fast
meth ods to com pute the 3-D mo ments. Most of them re quire com pu ta tions of or der N 3, as-

suming that the ob jectisrepresentedbya N” N" N voxel im age. Re cently, Yangetal.
(1996) pre sented amethod re quir ing com pu tation ofO(NZ) by usingadiscretedivergence
the o rem that al lows to com pute the sum of a func tion over an -di men sional dis crete re gion
by a sum mation over the dis crete sur face en clos ing the ob ject. In this pa per, we present a
new method to com pute 3-D mo ments. For this, we first de com pose the re gion into a set of
balls (cubes)underd , Thisdecompositionformsapartition. Triplesummationsusedinthe

o



3-D Carte sian Geometric Moment Compu ta tion using Morpho log ical Oper ationsand ...

com pu ta tion of the mo ments are re placed by the sum of the mo ments of each cube of
the par ti tion. The mo ments of each cube can be com puted in terms of a set of very sim-
pleex pressions using the cen ter of the cube and its radio. We show that once the par ti

tion is ob tained, mo ment com pu ta tion us ing the pro posed ap proach is much faster

than ear lier meth ods; its com plex ity isin factof O(N). We also show sev eral ex per
ments where the de rived mo ments can be used to com pute invariants use ful in the

rec og ni tion of three-dimensional ob jects.

Keywords: 2-D geo met ric mo ments, 3-D geo met ric moments, math e mati cal mor

phol ogy, metric spaces.

Introduccion

The two-dimensional Cartesian geometric
moment (for short 2-D moment) of a 2-D
object R is defined as Hu (1962):

m, =@y’ f(xy)dxdy )

where f(x,y) is the characteristic function

describing the intensity of , and p+q is the
order of the moment. Similarly, the three-di-
mensional Cartesian geometric moment (for

short 3-D moment) of order p+g+r of a 3-D
object is defined as Lo and Don (1989):

M pgr :@(pyqz'f(x,y,z)dMydz (2)

R

where is a 3-D region. In the case of a discrete
binary 3-D image, the moment of a 3-D ho-
mogeneous object represented by voxels is
often evaluated as:

M oy =éééxpyqzr 3)
R

with (x,y,zJ Z°andp,q,r =012, ..

2-D moments are important shape
features of a 2-D object, and have been widely

used in image analysis. Applications of 2-D
moments can be found in edge detection
(Reeves et al., 1983), texture analysis
(Albregtsen et al, 1995), movement esti-
mation (Pei and Liou, 1994), image align-
ment (Flusser and Suk, 1994), object des-
cription (Yang et al., 1995) and object re-
cognition (Dudany et al., 1977) and (Flusser
and Suk, 1993). Due to their usefulness lots of
efforts have been proposed to reduce the time
of computation. Among the most important
works we can mention the works of Zakaria
etal. (1997), Liy Shen (1991), Jiang and Bunke
(1991), Li (1993), Fu et al. (1993), Philips
(1993), Yangetal. (1994 and 1996) and Sossa et
al (1999).

The world around us is three-dimen-
sional by nature. 3-D shape information for
an object can be obtained by means of
computer tomographic  reconstruction,
passive 3-D sensors, and active range
finders. Like the 2-D moments, 3-D
moments have been used in 3-D image
analysis tasks including movement esti-
mation (Pei and Liou, 1994), shape
estimation (Shen and Li, 1993) , and object
recognition (Lo and Don, 1989).

The use of 3-D moments is limited due to
computational complexity. To compute all
moment of order p+g+r£K, a straight-
forward method needs additions and mul-
tiplications of O(K3N?®) (assuming that the
object is represented by an N N" N voxel
image).
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Some fast methods have been proposed to
reduce the computational complexity. In Li
(1993), Li uses a polyhedral representation of
the object for the computing of its 3-D
moments. The number of required operations
is a function of the number of edges of the
surfaces of the polyhedral. The methods of
Cyganskiet al. (1988), Li and Shen (1992) and Li
and Ma (1994) use a voxel representation of the
object. The difference among these methods is
the way to compute the moments. Cyganski et
al.(1988) make use of the filter proposed in
Budrikis and Hatamian, 1984). Li and Shen use
a transformation based on Pascal triangle for
the computation of the monomials; only
additions are used for the computation of the
moments. On the other hand, Li and Ma (1994)
relate 3-D moments with the so-called LT
moments that are easier to evaluate. Although
these methods allow to reducing the number of
operations to compute the moments, they
require a computation ofO(N°®). Recently, Yang
et al (1997) presented a discrete divergence
theorem to compute the 3-D moments of an
object. It allows a reduction in the number of
operations to O(N?). This theorem allows to
computing the sum of a function over an
n-dimensional discrete region by a summation
over the discrete surface enclosing the region.

In this paper we present a method to
compute the 3-D moments of a binary region
in Z3. The object is first partitioned into
convex balls which moment evaluation can
be reduced to the computation of very simple
formulae instead of using triple integrals. The
desired 3-D moments are obtained as the sum
of the moments of each ball of the partition,
given that the intersection among balls is
empty. A first effort in the 2-D case was first
presented in Sossa et al. (2001).

The paper is organized as follows. Basic
knowledge for better understanding of the
paper is given in section 2. The steps of the
proposed methodology are deeply explained in
section 3. Some experimental results and some
final comments are given in Sections 4 and 5.

Basic Background

This section presents the basic concepts
needed to follow the lecture of the paper.
Here the words image and function are used
as synonyms; the word volume will be used
as synonym of the subset of the image

domain. The symbol X will denote an
n-dimensional discrete space being a subset

of the n-dimensional real space. Most of the
times we will work onto a finite subset of
(the volume of the integers).
Metric and erosions

Definition 1. Afunction d X ® R" is called
a metric (or distance) iff for allx, y,z1 X, itholds
that:

a)d(x,y)=0U0 x =y

b)d(x y)=d(y,X)

o) d(x,y)+dly,z)3 d(y,z)

Definition 2. The distance function between
two points p,q1 X, is defined as

d¥(P,Q)=é lpi - ai 4)

is called ¥ -metric.
Definition 3. The pair (X,d), where d is a

metric is called a metric space.

Definition 4. Given a metric space (X,d), the
set defined by:

B, ={xd(x,p)Et} (5)

is called a closed ball of radius t with center in
pl X.
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Definition 5. Let B be a subset of X and
p1 X, the translation of B by p is defined as:

B, ={a+pal B} (6)

Definition 6. Let A and B subsets of X, the
erosion of A by B denoted by Aq B, is defined as:

AgB={xpB, | A} (7)

The methodology
Moments of a ball in d, metric

The main idea behind the proposed
metho- dology consist of:

1. Decompose the given shape into
a union of disjoint balls; we do this by
iteratively eroding the shape of interest
by means of the method next described
in section method based on iterated
erosions to get the parti tion.

2. Compute the geometric moments
for each of these balls, and

3. Obtain the final moments as a sum
of the moments computed for each ball

As mentioned before, a first effort in the
2-D case was first presented in Sossa et al.
(2001). Clearly, the process involved to
compute the moments of the balls will be
simpler and cheaper (in time and resources),
as the ball structure is simpler. Thed, metric
has been chosen as it allows us to generate
some of the most-simple balls (cubes in a

discrete Cartesian plane).

Before continuing we need to derive the
set of expressions that will allow us to
compute the geometric moments for each
cube using the dy metric in terms of their

radius and center. To obtain this set of
expressions, let us consider a cube centered
(X.,Y,,Z.) with radius t and coordinates of

its vertices in

(X -t,Y, - t,Z, - 1),
(X 4, Y, - t,Z, - 1),

(X, -t,Y

c

+t,Z, - 1),

(X, -t,Y

¢

-4,Z +1),
(X, +t,Y, +t,Z, - 1),
(X, +t,Y, -t,Z, +1),

(X, -t,Y, +t,Z_ +1),and

¢

(X, +t,Y, +t,Z_ +1),

Let us also consider well-known Ber-

noulli’s formulation (Yang and Albregtsen,
1994-1996):

B, (p- 1)(p- 2)n"°

20 (8)

where the last term of the series containsnor
nZ depending on if p is even or odd
respectively. The Bj’'s denote Bernoulli’s
numbers (Yang and Albregtsen, 1994-1996).

The sum of the powers in direction x for a
cube R, can be found by means of equation
(8). The limits of the summation are: X, - t
and X +t, thus:
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X5t X+ Xst-1
kP = a kP- akp
k=X, t k= k=1
(X, +1)™ 1 o, BpX. +1)"" By(p- Yp- 2X +t)"* U
- ~ (o + = X +t + c _ 2 C + ..y
S p+l o e *t) 2 4 a
é(X -t-1F" 1 X t1pl Y
_ A( c )) +—(X 1)p 1p( l_'.l
Analogously, for all coordinates in directions
y and z, we have that:
Y6+t Yb+t Yex t 1
kP = k" - a K
k=Yc— t k=1
+1 -3 N
_ ey +t)” (Y )+ Blp(Y +t)p Bo(p- 1fp- 2. +t)” | U
p+l 4 9
e ) u
- t-9™ 1 0 Blp(Y-t )yt v
S REL A 4
p+1 0 (10)
and
k=Z +t k= z ot k=Z -t-1
A kP = a kP - é kP
k=Z.-t k=1 k=1
+ p-3 u
_ Cz +tf" L1 (Z Ly + B.p@. +t )" B,(p- 1)p- 2Xz ), 4
g p+l 2 41 4]
i +1 e -1 u
_gzc t ])0 +£(Zc_t_1P+Blp(Zc t 1)3 'l.'l
g p+l 2 2 9| (11)
When applying equations (9) to (11) to
equation (8), we obtain the expressions for
the moments of order p+g+r for a cube R of
radiust centered at (X, ,Y.,Z.) For example,
expression for momentmg, is:
—)60+t ]gc‘*'t k= 60
M, =a la 1al=@+1(2+1)2t+1)=Qt+1.
=Xt Vet K=Ze-t (12)
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Mioo = Moo X
Moo =MaoYe
Moo =M goZ,

—Mgo
200

(BXZ +1(t +1))

Moz =22 (3, +1(t +1)

m,,, = m?(:oo (3Z2 +t(t +1)

My = My Yy =Mgye XY,
My =MZ, =My X Z,
m,, =mg,Y =m/ YZ

011 @1 000 "c¢c

My =M geX (X{ +1(t +1))

2
Moz =M oY (Y, +1(t +1))

Moo =mmozc (ZC2 +t(t +1))

My, = m3@° X (3Y2 +1(t+1))

m
My = %Yc (3X02 +t(t+1))

(12a)

(12b)

(12¢)

(12d)

(12¢)

(12f)

(129)

(12h)

(12i)

(12j)

(12K)

(121)

(12m)

(12n)

Moy = m;" X622 +t(t+1))  (120)
Mo, = mgmﬁ’ Z . (3X2 +1(t +1)) (12p)
Moss = mswf’ Y.(BZ7 +1(t +1)) (120)
My, = m;O Z.(3Y2 +1(t +1)) (12r)
My =M o X Y Z, (12s)

Method based on iterated erosions
to get the partition

The following method to compute the
geometric moments of a 3-D object R1 Z?,
using morphological erosions is a direct
extension to the one described in Sossa et al.

(2001). It is composed of the following steps:

1 Initialize 20 accumulators Ci=0,

for i=1,2,...,20, one for each geometric
moment.

2. Make A=R and,B=
{(_aib+c)|abcl {101}}B isa 373 3
pixel neighborhoodinz®.

3. Assign A = A q B iteratively until
the next erosion results in A (the null
set). The number of iterations of the
erosion oper ation before set £ appears,
is the radius t of the maximal cube
completely contained in the original
region R. The center of this cube is found
in set A just before set AEappears.

4. Select one of the points of A and
given that the radius t of the maximal

cube is known, we use the formulae

INGENIERIA Investigacion y Tecnologia FI-UNAM
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derived in the last section to compute
the moments of this maximal cube, the
resulting values are added to the respec-

tive 20 accu mu lator, Ci, for 1,2,...,20.

5. Eliminate this ball from region R,
and assign this new set toR.

6. Repeat steps 2 to 5 with the new
until it becomes A&

The method just described gives us as a
result the true values of the geometric
moments of order (p +q +r) £3, using only
erosions and the formulae developed in
Section of the moments of a ball in d, metric.

By their nature, the erosions can be done
in a massively parallel computer in pretty
short processing times. This method s,
however, a brute force method (BFM). A
considerable enhancement can be obtained if
steps 4 and 5 are replaced by:

1. Select those points in A at a
distance among them greater than 2t
and use the formulae given by Proposi
tion 1, to compute the geometric
moments of these maximal cubes, and
add these values to the respective accu-
mulators.

2. Eliminate the maximal cubes
from region,and assign this new set to.

The enhanced method (EM) consists in
processing all maximal cubes of the same
radius in just a step, coming back to the
iterated erosions until the value of the radiot
should be changed. At this point it is very
important to verify that the eliminated cubes
do not intersect with those just eliminated,
because one of the important conditions is
that the set of maximal cubes forms a
partition of the image. Thus one has to
guarantee that these maximal cubes be
disjoint sets.

Experimental Results

Moment computation

The method introduced in this paper is not
designed to work on a conventional com-
puter. Experiments were however done on a
233 MHz PC based system. This way, the
processing times are only significant when
comparing the method eliminating a cube at
the time against the method eliminating at
the same time all the non-intersecting
maximal cubes at the same step.

Both methods were tested on several
hundreds of images. All of them are binary
and 101" 1017101 pixel sized. These images
were obtained by generating at random P
touching and overlapping cubes of different
sizes inside the 101 °101” 101 image. At the
beginning all the locations of the
101 " 101" 101 cube are zero.

The BFM takes on average, over the whole
set of images, 320 seconds to compute all
moments of order (p +q+r)£3. The 320
seconds include the time to compute the
partition iteration by iteration. The EM
requires only about 80 seconds onto 233 Mhz
PC based system to compute the same
moments. Again the 80 seconds include the
time to get the partition. In both cases most of
the time is required to obtain the necessary
partitions.

Efficiency of the computation

With respect to other methods providing the
same results as if equation 3 were used, our
method is faster, once the partition is

obtained. As _you can appreciate its com-
plexity is of - TO show this, let us suppose that

the image has N rows in all the three
directions, and that the object occupies the
entire intensity volume, we have thus an
object composed of voxels, with t its radio.
Table 1 lists the number of operations
required to compute the first 20 moments by
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the straightforward method, by those
proposed by Cyganski et al. (1988), Li and
Shen (1992), Li and Ma (1994) and ours. The
computational complexity of the earlier
methods shown in table 1 was taken from
Yang et al. (1997).

For a given t, our method requires only 36
multiplications and 8 additions to compute
the 20 moments. To get these two numbers
we just added the number of multiplications
and additions required by each of the 20
moments to be computed. requires, for
example, 3 multiplications and 1 addition.
M1 =M op X, Fequires 1 multiplication and no
additions because it is supposed that the term
(2t +1)° was already computed.

The careful reader can rapidly see from
this table that our method is faster than
others, even for a small N. The interested
reader can easily verify that for greater
values of N our method still requires less
time. This is due mainly to the fact that our
method uses t instead of N to compute the
desired moments.

Object Recognition

3-D moments as 2-D moments have been used

in object recognition. In many cases those
moments are not used in their standard form,

this is, directly. They are combined some way
to obtain quantities a lit bit changing before set
of transformations. We are talking about the
so-called invariant moments

In the bi-dimensional case the well-known
Hu moments, invariant to translations,
rotations and scale changes were derived and
used since 30 years (Hu, 1962). In Flusser and
Suk (1993) and in Reiss (1991) arrived to the
other set of invariants, but before general
transformations (affine transformations). In
this section we present a set of experiments to
test performance of invariants derived from
the set of the formulae proposed in section
moments of a ball in metricq,.

Several invariants can be derived by means of
the Fundamental Theorem of Moment
Invariants (FTMI), proposed in Sadjadi and

Hall (1980). Two of them are:

32
I, = (13)
J,
D
I, =—% (14)
Jq
with
J1 = Moo +Mon +Moz (15)

J2 = MMy - Mhy +MooMopz - Mig + Mg My20 - My
@M M Mg u

D, =det§’n10 Mo mmg
Mo Mu Mef

The my, are computed as:
me=aaax-x) -y 2z) (15
R

with

In this section we show how the invariants
moments obtained through the methodology
proposed in this paper can be used to
differentiate among 3-D objects. In the
experiments were used the three objects
shown in figure 1: A sphere of radius of 8
voxels, a pyramid with base of 25" 25 voxels
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and a parallelepiped of 5513 13 voxels.
Figure 2 shows three transformed versions
(translated, rotated and scaled) of the objects
of figure 1. Table 2 shows the values of the
corresponding transformations for each
object. Table 3 shows the values of the
invariant moments for each object’s image. In
the Table the average times in seconds
invested for the computation of the
invariants; this includes the time used to
obtain the corresponding partitions.

Figure 3, shows the values of the com- puted
invariants for each object (sphere: , pyramid:
and parallelepiped: ). From this figure and
table 3 the reader can appreciate, in the one
hand, that except for class (sphere), the values
obtained for the other two classes (pyramid
and parallelepiped) change very little inside
each class. In the other hand, the differences in
the invariants from class to class suggest that
any linear classifier could help to differentiate
among the three objects used.

Object No.1 Object No.2 Object No.3
Figure 1. The three objects used in the exper i ments
sphere pyramid parallelepiped
Transf. ® Y

o |

Figure 2. Three trans formed versions (trans lated, rotated and scaled) of the objects of Figure 1
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1,(m @® Sphere
A ’ A pyramid
[ | Paralelepped

35T
30+
25+
201
15+
101"

5 T A at oe¢ o

0 > 1,(m)

0 5 101520 253035

Figure 3. Values of invariant moments 11 and 12 for the trans formed versions of the objects of Figure 1

Table 1. A compar ison of complexity in computing all the moments of order up to( p+q+r £ K=3) from a
discrete image of N° N~ N voxels.

Met had Mul ltip lications Additions
Straightf award ?K3+K2+£K ade ?K3+K2+£K+19N3
€6 6 o eb 6 7]
Cy@rskl etd. éa;Kz__lKgNz (K+1)N3+éKz+1K+4QN2
e2 2 g &2 2 I}
Li and Sten 0 gﬂ_K“ +£K3+1§(N3-3N2)
e2 2 [}
Li adMa 2KN 2 N° +(K? +2K N?
Yargetal. 2KN 2 A 7

5
gEKZ +EK+3,;N 2
New aN o6 o
Iﬁt—%g?- 15 &—8%-1’-&

Table 2. Trans for ma tions used to obtain the objects of Figure 2

Trandor mat on Translati on Rotationi ndegr ess Changeof scale
N of object M
X y z Withrepect Withrespect Withregpect Scaling fador
to x toy toz
11 20 30 30 20 40 10 2
2,1 15 45 20 30 15 36 3
31 37 58 12 40 37 26 15
1,2 35 35 21 50 77 16 14
2,2 35 34 21 70 a4 20 1.7
23 18 35 45 10 16 5 3
31 30 40 50 40 0 0 05
32 44 26 12 50 25 16 15
33 32 12 17 10 77 62 25
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Table 3. Values of invariant moments I1 and 12 for the trans formed versions of the objects of Figure 1.
The times were obtained with a PC Pentium Il at 233 MHz.

Transformatiof

N of object M Translation Rotation in degrees Change of scale

X y 7 resgg(i:ttt}o « Withtcr)e;pect Witht cr)egpec’t Scaling factor
11 20 30 30 20 40 10 2
2,1 15 45 20 30 15 36 3
31 37 58 12 40 37 26 15
1,2 35 35 21 50 77 16 14
2,2 35 34 21 70 44 20 1.7
2,3 18 35 45 10 16 3
31 30 40 50 40 0 0.5
3,2 44 26 12 50 25 16 15
3,3 32 12 17 10 77 62 2.5

Conclusions and Future Research

A new method to compute geometric
moments for a 3D object has been presented.
Initially, the object is partitioned in a set of
convex balls whose moment evaluation can
be reduced to the computation of very simple
formulae. The resulting shape moments are
finally obtained by addition of the moments
of each ball forming the partition, giving that
the intersections are empty. Mathematical
Morphology was used to obtain the desired
partition of the shape. As the morphological
operations implied could be computed in a
massively parallel computer, the compu-
tation of geometric moments is extremely
very fast.

One of the main features of the proposed
method is that once the partition is obtained
its complexity is of O(N).

Derived invariants derived through the
standard moments obtained by the proposed
methodology can be also used to differentiate

among 3-D obijects.

As a future work, we pretend to install this
technology to sequential algorithms able to

compete with actual algorithms on those
computing platforms.

Acknowledgments

The authors would like to thank the CIC-IPN,
COFAA, CGPI under projects 20050156 and

20060517, and the CONACYT under project
46805 for their economical support to
develop this work.

References

Albregtsen F., Schulerud H. and Yang L.
(1995). Texture Classificationof Mouse
Liver Cell Nuclei Using Invariant
Moments of Consistent Regions, CAIP
95, Proceedings, LNCS 970, pp.
496-502.

Budrikis Z.L. and Hatamian M.(1984).

Moment Calculations by Digital
Filters. AT&T Bell Lab. Tech.
63:217-229.

Cyganski D., Kreda S.J. and Orr J.A.
(1988). Solving for the General Linear

Transformation Relating 3-D Objects
from the Minimum Moments, In: SPIE
Intelligent Robots and Computer

Vision VII, Proceedings of the SPIE,

Vol.VIIl No.2 -abril-junio- 2007

121



3-D Carte sian Geometric Moment Compu ta tion using Morpho log ical Oper ationsand ...

Vol. 1002, pp. 204-211, Bellingham,
WA.

Dudani S.A., Breeding K.J. and Mcghee
R.B. (1977). Aircraft Identification by
Moment Invariants. IEEE Transactions
on Computers, 28(1):39-46.

FlusserJ.and Suk T. (1993). Pattern Recog-
nition by Affine Moment Invariants.
PatternRecognition, 26(1): 167-174.

Flusser J. and Suk T. (1994). A Moment
Based Approach to Registration of
Images with Affine Distortion. IEEE
Transactions on Geo-science and remote
sensing, 32(2):382-387.

FlusserJ.and Suk T. (1993). Pattern Recog-
nition by Affine Moment Invariants.
Pattern Recognition, 26(1): 167-174.

Fu Ch.W., Yen J.Ch. and Chang Sh.
(1993). Calculation of Moment Inva-
riants via Hadamard Trans form. Pattern
Recognition, 26(2):287-294.

Hu M.K. (1962).Visual Pattern Recog ni tion
by Moment Invariants. IRE Transactions
onInformation Theory, pp.179-187.

Jiang X.Y. and Bunke H. (1991). Simple

and Fast Computation of Moments.

PatternRecognition, 24(8):801-806.

B.C. (1993). The Moment Calcu lation of

Polyhedra. Pattern Recognition, 26:

1229-1233.

B.C. and Shen J. (1992). Pascal Trian-

gle-Transform Approach to the Calcu-

lation of 3D Moments. CVGIP: Gra

-phical Models and Image Processing,

54:301-307.

Li B.C. and Ma S.D. (1994). Efficient
Computation of 3D Moments, In:
Proceedings of 12" the International
Conference on Pattern Recognition,
Vol. 1, pp. 22-26. Lo C.H. and Don H.S.
(1989). 3-D Moment Forms, their Cons
-truction and Application to Object
Identification and Positioning. IEEE
Transactions on Pattern Analysis and
MachineIntelligence, 11:1053-1064.

Li B.Ch. and Shen J. (1991). Fast Compu-
tation of Moment Invariants. Pattern
Recognition, 24(8):807-813.

L

L

Li B.Ch. (1993). A New Computation of
Geometric Moments. Pattern Recogni-
tion, 26(1):109-113.

Pei S.C. and Liou L.G. (1994). Using
Moments to Acquire the Motion Para-
meters of a Deform able Object Without
Correspondences. Image Vision Com-
puting, 12:475-485.

Philips W. (1993). A New Fast Algo rithm
for Moment Computation. Pattern
Recognition, 26(11):1619-1621.

Reeves A.P., Akey M.L. and Mitchell O.R.
(1983). A Moment Based Two-Dimen-
sional Edge Operator, In: Proceedings
of the International Conference on
Computer Vision and Pattern Recog ni -
tion, pp. 312-317.

Reiss T. (1991). The Revisited Funda-
mental Theorem of Moment Inva-
riants. IEEE Transactions on Image Anal-
ysis and machine Intelligence, 13(8):
830-834.

Sadjadi F.A. and Hall E. (1980).
Three-Dimensional Moment Invariants.
IEEE Transactions on Pattern Analysis
and Machine Intelligence, Vol. PAMI-2,
No 2, 1980.

Shen J. and Li B.C. (1993). Fast Deter mi
na tion of Center and Radius of Spher -
ical Surface by use of Moments, In:
Proceedings of the 8t Scandinavian
Conference on Image Analysis,
Tromso, Norway, pp. 565-572.

Sossa H., Mazaira |. and lIbarra J.M.
(1999). An Extension to Philips Algo-
rithm for Moment Calculation.
Computacion y Sistemas, 3(1):5-16.

Sossa H., Yafez C. and Diaz J.L. (2001).
Computing Geometric Moments Using
Morphological Erosions. Pattern Recog-
nition, 34(2):271-276.

Yang L., Albregtsen F., Lonnestad T.,
Grottum P., Iversen J.G., Rotnes J.S.
and Rottingen J.A. (1995). Measuring
Shape and Motion of White Blood Cells
from a Sequence of Fluorescence
Microscopy Images, In: Theory and
Applications of Image Analysis Il (G.

122 INGENIERIA Investigacion y Tecnologia FI-UNAM



H. Sossa-Azuela, F.J. Cuevas, C. Aguilar-lbafiez and H. Benitez-Mufioz

Borgefors, Ed), pp. 305-316, World Yang L. and Albregtsen F. and Taxt T.
Scientific,Singapore. (1997). Fast Computation of Three-
Yang L. and Albregtsen F. (1994). Fast Dimen sional Geometric Moments Using
Computation of Invariant Geometric a Discrete Divergence Theorem and a
Moments: a New Method Giving Generalization to Higher Dimensions.
Correct Results. Proceed ings of the 12th CGVIP: Graphical models and image
International Conference on Pattern processing, 59(2):97-108.
Recognition, Jerusalen, Israel, 201-204. Zakaria M.F., Vroomen L.J., Zsom-
Yang L. and Albregtsen F. (1996). Fast rob-Murray P.J.A. and Van-Kessel
and Exact Computation of Cartesian JJM.H.M. (1987). Fast Algorithm for
Geometric Moments Using Discrete the Computation of Moment Inva-
Green’s Theorem. Pattern Recognition, riants.PatternRecognition, 20(6):639-643.

29(7):1061-1073.

Semblanza de los autores

Juan Humberto Sossa-Azuela. Received his BS degree in Commu ni ca tions and Elec tronics from the Univer sity of
Guadalajara in 1980. He obtained his Master degree in Elec trical Engi neering from CINVESTAV-IPN in 1987
and his PhD in Infor ma tics form the INPG, France in 1992. He is currently a titular professor of the Pattern
Recog ni tion Labo ra tory of the Center for Computing Research, Mexico since 1996. He has more than 30 publi-
ca tions in inter na tional jour nals with rigorous refer eeing and more than 100 works in national and inter na-
tional confer ences. His research areas are Pattern Recog ni tion, Image Anal ysis and Neural Networks.

Fran cisco Cuevas de la Rosa. Received his BS degree in Compute Sciences from the ITESM, Mexico in 1984. He
obtained his Master degree in Computer Science in Arti fi cial Intel li gence from the ITESM, Mexico in 1995 and
his PhD in Optics Metrology from Centro de Investigaciones en Optica, A.C., Mexico in 2000. He hasmore than
20 publi ca tions in inter na tional jour nals with rigorous refer eeing and more than 40 works in national and
inter national confer ences. His research areas are Computer Vision, Optical Metrology, Genetic Algo rithms and
Neural Networks.

Carlos Aguilar-lbafiez. Received the M. Sc. and Ph. D. In Elec trical Engi neering from the CINVESTAV-IPN, Mexico
in 1994 and 1999, respec tively. He is currently a titular professor of the Auto matic Control Laboratoryofthe
Center for Computing Research of the, Mexico since 1999. His research inter ests include nonlinear system,
underactuated mechanical system, identificationsystem.

Héctor Benitez-Mufioz. Received his BS degree in Infor ma tics from the Instituto tecnolégico de Apizaco, Mexico in
1998. He obtained his Master degree in Computer Science from the Center for Computing Research of the,
Mexico in 2005. Actually, he is working at Intermec Tech nol ogies of Mexico where he develops wire less appli

cations for mobile systems.

Vol.VIIl No.2 -abril-junio- 2007 123



