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Resumen
Los momentos geométricos tridimensionales son rasgos importantes para el
reconocimiento de objetos 3-D y la descripción de forma. El cálculo de estos rasgos
en el caso 3-D mediante el nétodo tradicional requiere de una gran número de
operaciones. Varios autores han propuesto métodos para su cálculo. La mayoría
requieren cómputos de orden N3, suponiendo que el objeto es representado como
uan imagen voxelizada de N×N×N elementos. Recientemente, Yang et al. (1996),
presenta un método quequiere el cálculo de O(N2) al usar el teorema discreto de la
divergencia que permite calcular la suma de una función para una región discreta
n-dimensional mediante la suma sobre una región discreta encerrando al objeto. En
este artículo presentamos un nuevo método para el cálculo de momentos 3-D. Para
esto, primeramente descomponemos una región en un conjunto de cubos. Esta
descomposición forma una partición. Las sumatorias triples usadas en el cálculo de
los momentos son reemplazadas por la suma de los momentos de cada cubo de la
partición. Los momentos de cada cubo pueden ser calculados en términos de un
conjunto muy sencillo de expresiones usando el centro del cubo y su radio.
Mostramos que una vez que la partición ha sido obtenida, el cálculo de los
momentos al uar la propuesta es mucho más rapida que la proporcionada por
métodos anteriores; la complejidad de la propuesta e de O(N). También mostramos
vario ejemplos donde los momentos derivados pueden res usados en el cálculo de
invariantes para el reconocimiento de objetos tridimensionales.

Descriptores: Momentos tridimensionales, cálculo de momentos geométricos,
rasgos invariantes, reconocimiento de objetos.

Abstract
Three-dimensional Car te sian geo met ric mo ments are im por tant fea tures for 3-D ob ject rec -
og ni tion and shape de scrip tion. Com puting these fea tures in the 3-D case by a straight for -
ward method re quires a large num ber of op er a tions. Sev eral au thors have pro posed fast
meth ods to com pute the 3-D mo ments. Most of them re quire com pu ta tions of or der N 3, as -

sum ing that the ob ject is rep re sented by a  N ×N×N  voxel im age. Re cently, Yang et al.
(1996) pre sented a method re quir ing com pu ta tion of O(N2) by us ing a dis crete di ver gence
the o rem that al lows to com pute the sum of a func tion over an -di men sional dis crete re gion
by a sum ma tion over the dis crete sur face en clos ing the ob ject. In this pa per, we pres ent a
new method to com pute 3-D mo ments. For this, we first de com pose the re gion into a set of
balls (cubes) un der d ∞  This de com po si tion forms a par ti tion. Tri ple sum ma tions used in the



com pu ta tion of the mo ments are re placed by the sum of the mo ments of each cube of
the par ti tion. The mo ments of each cube can be com puted in terms of a set of very sim -
ple ex pres sions us ing the cen ter of the cube and its ra dio. We show that once the par ti -
tion is ob tained, mo ment com pu ta tion us ing the pro posed ap proach is much faster
than ear lier meth ods; its com plex ity is in fact of O(N). We also show sev eral ex per i -
ments where the de rived mo ments can be used to com pute invariants use ful in the
rec og ni tion of three-dimensional ob jects. 

Key words:  2-D geo met ric mo ments, 3-D geo met ric mo ments, math e mat i cal mor -
phol ogy, met ric spaces.

Introducción

The two-dimensional Cartesian geometric
moment (for short 2-D moment) of a 2-D
object R  is defined as Hu (1962):

                m x y f x y dxdypq
p q

R

= ∫∫ ( , )                   (1)

where f x y( , ) is the characteristic function
describing the intensity of , and p+q  is the
order of the moment. Similarly, the three-di-
mensional Cartesian geometric moment (for
short 3-D moment) of order p+q+r of a 3-D
object is defined as Lo and Don (1989):

         m x y z f x y z dxdydzpq r
p q r

R

= ∫∫∫ ( , , )           (2)

where  is a 3-D region. In the case of a discrete 
binary 3-D image, the moment of a 3-D ho-
mogeneous object represented by voxels is
often evaluated as:

                   m x y zpqr
p q r

R

= ∑∑∑                      (3)

with (x,y,z)∈ =Z 3 andp q r, , , , , ...0 1 2

2-D moments are important shape
features of a 2-D object, and have been widely 

used in image analysis. Applications of 2-D
moments can be found in edge detection
(Reeves et al., 1983), texture analysis
(Albregtsen et al., 1995), movement esti-
mation (Pei and Liou, 1994), image align-
ment (Flusser and Suk, 1994), object des-
cription (Yang et al., 1995) and object re-
cognition (Dudany et al., 1977) and (Flusser
and Suk, 1993). Due to their usefulness lots of
efforts have been proposed to reduce the time 
of computation. Among the most important
works we can mention the works of Zakaria
et al. (1997), Li y Shen (1991), Jiang and Bunke
(1991), Li (1993), Fu et al. (1993), Philips
(1993), Yang et al. (1994 and 1996) and Sossa et 
al. (1999).

The world around us is three-dimen-
sional by nature. 3-D shape information for
an object can be obtained by means of
computer tomographic reconstruction,
passive 3-D sensors, and active range
finders. Like the 2-D moments, 3-D
moments have been used in 3-D image
analysis tasks including movement esti-
mation (Pei and Liou, 1994), shape
estimation (Shen and Li, 1993) , and object
recognition (Lo and Don, 1989). 

The use of 3-D moments is limited due to 
computational complexity. To compute all
moment of order p+q+r≤K, a straight-
forward method needs additions and mul-
tiplications of O(K 3N3)  (assuming that the
object is represented by an N×N×N voxel
image). 
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Some fast methods have been proposed to
reduce the computational complexity. In Li
(1993), Li uses a polyhedral representation of
the object for the computing of its 3-D
moments. The number of required operations
is a function of the number of edges of the
surfaces of the polyhedral. The methods of
Cyganski et al. (1988), Li and Shen (1992) and Li 
and Ma (1994) use a voxel representation of the
object. The difference among these methods is
the way to compute the moments. Cyganski et
al.(1988) make use of the filter proposed in
Budrikis and Hatamian, 1984). Li and Shen use
a transformation based on Pascal triangle for
the computation of the monomials; only
additions are used for the computation of the
moments. On the other hand, Li and Ma (1994)
relate 3-D moments with the so-called LT
moments that are easier to evaluate. Although
these methods allow to reducing the number of 
operations to compute the moments, they
require a computation of O(N3). Recently, Yang 
et al. (1997) presented a discrete divergence
theorem to compute the 3-D moments of an
object. It allows a reduction in the number of
operations to O(N2). This theorem allows to
computing the sum of a function over an
n-dimensional discrete region by a summation
over the discrete surface enclosing the region.

In this paper we present a method to
compute the 3-D moments of a binary region
in Z3. The object is first partitioned into
convex balls which moment evaluation can
be reduced to the computation of very simple 
formulae instead of using triple integrals. The 
desired 3-D moments are obtained as the sum 
of the moments of each ball of the partition,
given that the intersection among balls is
empty. A first effort in the 2-D case was first
presented in Sossa et al. (2001). 

The paper is organized as follows. Basic
knowledge for better understanding of the
paper is given in section 2. The steps of the
proposed methodology are deeply explained in
section 3. Some experimental results and some
final comments are given in Sections 4 and 5.

Basic Back ground

This section presents the basic concepts
needed to follow the lecture of the paper.
Here the words image and function are used
as synonyms; the word volume will be used
as synonym of the subset of the image
domain. The symbol X will denote an
n-dimensional discrete space being a subset
of the n-dimensional real space. Most of the
times we will work onto a finite subset of  

(the volume of the integers).

Metric and erosions

Definition 1. A function d: X R+→  is called
a metric (or distance) iff for all x y z, , ∈X , it holds
that:

a) d x y x y( , ) = ⇔ =0

b) d x y d y x( , ) ( , )=

c) d x y d y z d y z( , ) ( , ) ( , )+ ≥

Definition 2.  The distance function between
two points p q, ∈X , is defined as

                  d p q p qi i
i l

n

∞
=

= −∑( , )                    (4)

is called ∞ -metric.

Definition 3. The pair (X,d), where d is a
metric is called a metric space.

Definition 4. Given a metric space (X,d), the
set defined by:

                     B xd x p tp
t = ≤{ ( , ) }                    (5)

is called a closed ball of radius t with center in 
p∈ X.
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Definition 5. Let B be a subset of X and
p ∈ X, the translation of B by p is defined as:

                      B a p a Bp = + ∈{ }                               (6)

Definition 6. Let A and B subsets of X, the
erosion of A by B denoted by A θ  B, is defined as:  

                      A B x B Axθ = ⊆{ }                               (7)

The meth od ology

Moments of a ball in d∞ metric

The main idea behind the proposed
metho- dology consist of:

1. Decom pose the given shape into
a union of disjoint balls; we do this by
iteratively eroding the shape of interest
by means of the method next described
in section method based on iter ated
erosions to get the parti tion.

2. Compute the geometric moments
for each of these balls, and 

3. Obtain the final moments as a sum
of the moments computed for each ball

As mentioned before, a first effort in the
2-D case was first presented in Sossa et al.
(2001). Clearly, the process involved to
compute the moments of the balls will be
simpler and cheaper (in time and resources),
as the ball structure is simpler. The d ∞  metric
has been chosen as it allows us to generate
some of the most-simple balls (cubes in a
discrete Cartesian plane).

Before continuing we need to derive the
set of expressions that will allow us to
compute the geometric moments for each
cube using the d∞   metric in terms of their

radius and center. To obtain this set of
expressions, let us consider a cube centered 
( , , )X Y Zc c c  with radius t and coordinates of
its vertices in 

( , , ),X t Y t Z tc c c− − −  

( , , ),X t Y t Z tc c c+ − −
 

( , , ),X t Y t Z tc c c− + −
 

( , , ),X t Y t Z tc c c− − +
 

( , , ),X t Y t Z tc c c+ + −
 

( , , ),X t Y t Z tc c c+ − +
 

( , , ),X t Y t Z tc c c− + +  and 

( , , ),X t Y t Z tc c c+ + +

Let us also consider well-known Ber-
noulli’s formulation (Yang and Albregtsen,
1994-1996):

k
n
p

n
B pnp

p
p

p

k

k n

=
+

+ + −
+ −

=

=

∑
1

1
1

1 1
1
2 2 !

              
B p p n p

2
31 2

4
( )( )

!
...

− −
+

−

                (8)

where the last term of the series contains n or
n2, depending on if p is even or odd
respectively. The Bj’s denote Bernoulli’s
numbers (Yang and Albregtsen, 1994-1996). 

The sum of the powers in direction x for a
cube R, can be found by means of equation
(8). The limits of the summation are: X tc −
and X tc + , thus:
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Analogously, for all coordinates in directions
y  and z, we have that:

and

When applying equations (9) to (11) to
equation (8), we obtain the expressions for
the moments of order p+q+r  for a cube R  of
radius t  centered at ( , , )X Y Zc c c . For example,
expression for moment m0 00  is:
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The reaser can easily show that:

m m X c1 00 000=  (12a)

m m Yc0 10 000=  (12b)

m m Z c0 01 000= (12c)

m m X t tc2 00
00 0 2

3
3 1= + +( ( )) (12d)

m
m

Y t tc0 20
00 0 2

3
3 1= + +( ( )) (12e)

m m Z t tc0 02
00 0 2

3
3 1= + +( ( )) (12f)

m m Y m X Yc c c1 10 100 00 0= = (12g)

m m Z m X Zc c c1 01 100 00 0= = (12h)

m m Y m Y Zc c c0 11 001 00 0= = (12i)

m m X X t tc c3 00 000
2 1= + +( ( )) (12j)

m m Y Y t tc c0 30 000
2 1= + +( ( )) (12k)

m m Z Z t tc c0 03 000
2 1= + +( ( )) (12l)

m m X Y t tc c1 20
000 2

3
3 1= + +( ( ))           (12m)

m
m

Y X t tc c2 10
00 0 2

3
3 1= + +( ( )) (12n)

m
m

X Z t tc c102
000 2

3
3 1= + +( ( )) (12o)

m m Z X t tc c201
000 2

3
3 1= + +( ( )) (12p)

m
m

Y Z t tc c012
000 2

3
3 1= + +( ( )) (12q)

m m Z Y t tc c021
000 2

3
3 1= + +( ( )) (12r)

m m X Y Zc c c111 000= (12s)

Method based on iter ated erosions
to get the parti tion

The following method to compute the
geometric moments of a 3-D object R Z⊂ 3 ,
using morphological erosions is a direct
extension to the one described in Sossa et al.
(2001). It is composed of the following steps:

1. Initialize 20 accu mu la tors C i=0,
for i=1,2,...,20, one for each geometric
moment.  

2. Make A R=  and, B=
{( , , ) , , { , , }},± ± ± ∈ −a b c a b c B1 0 1   is a 3 3 3× ×
pixel neigh bor hood in Z

3 .

3. Assign A ← A θ B iteratively until
the next erosion results in ∅ (the null
set). The number of iter a tions of the
erosion oper a tion before set ∅  appears,
is the radius t of the maximal cube
completely contained in the orig inal
region R. The center of this cube is found 
in set A just before set ∅ appears.

4. Select one of the points of A and
given that the radius t of the maximal
cube is known, we use the formulae
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derived in the last section to compute
the moments of this maximal cube, the
resulting values are added to the respec -
tive 20 accu mu lator, Ci, for 1,2,...,20.

5. Elim i nate this ball from region R,
and assign this new set to R.

6. Repeat steps 2 to 5 with the new 
until it becomes ∅.

The method just described gives us as a
result the true values of the geometric
moments of order ( )p q r+ + ≤ 3, using only
erosions and the formulae developed in
Section of the moments of a ball in d∞  metric.

By their nature, the erosions can be done
in a massively parallel computer in pretty
short processing times. This method is,
however, a brute force method (BFM). A
considerable enhancement can be obtained if
steps 4 and 5 are replaced by:

1. Select those points in A at a
distance among them greater than 2t
and use the formulae given by Prop o si -
tion 1, to compute the geometric
moments of these maximal cubes, and
add these values to the respec tive accu -
mu la tors.

2. Elim i nate the maximal cubes
from region , and assign this new set to .

The enhanced method (EM) consists in
processing all maximal cubes of the same
radius in just a step, coming back to the
iterated erosions until the value of the radio t
should be changed. At this point it is very
important to verify that the eliminated cubes
do not intersect with those just eliminated,
because one of the important conditions is
that the set of maximal cubes forms a
partition of the image. Thus one has to
guarantee that these maximal cubes be
disjoint sets. 

Exper i mental Results

Moment compu ta tion

The method introduced in this paper is not
designed to work on a conventional com-
puter. Experiments were however done on a
233 MHz PC based system. This way, the
processing times are only significant when
comparing the method eliminating a cube at
the time against the method eliminating at
the same time all the non-intersecting
maximal cubes at the same step.

Both methods were tested on several
hundreds of images. All of them are binary
and 101 101 101× ×  pixel sized. These images
were obtained by generating at random P
touching and overlapping cubes of different
sizes inside the 101 101 101× ×  image. At the
beginning all the locations of the 
101 101 101× ×  cube are zero.

The BFM takes on average, over the whole
set of images, 320 seconds to compute all
moments of order ( )p q r+ + ≤ 3. The 320
seconds include the time to compute the
partition iteration by iteration. The EM
requires only about 80 seconds onto 233 Mhz
PC based system to compute the same
moments. Again the 80 seconds include the
time to get the partition. In both cases most of 
the time is required to obtain the necessary
partitions.

Effi ciency of the compu ta tion

With respect to other methods providing the
same results as if equation 3 were used, our
method is faster, once the partition is
obtained. As you can appreciate its com-
plexity is of . To show this, let us suppose that 
the image has N  rows in all the three
directions, and that the object occupies the
entire intensity volume, we have thus an
object composed of  voxels, with t its radio.
Table 1 lists the number of operations
required to compute the first 20 moments by
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the straightforward method, by those
proposed by Cyganski et al. (1988), Li and
Shen (1992), Li and Ma (1994) and ours. The
computational complexity of the earlier
methods shown in table 1 was taken from
Yang et al . (1997). 

For a given t, our method requires only 36
multiplications and 8 additions to compute
the 20 moments. To get these two numbers
we just added the number of multiplications
and additions required by each of the 20
moments to be computed. requires, for
example, 3 multiplications and 1 addition. 
m m Xc1 00 000= requires 1 multiplication and no 
additions because it is supposed that the term  
( )2 1 3t + was already computed.

The careful reader can rapidly see from
this table that our method is faster than
others, even for a small N . The interested
reader can easily verify that for greater
values of N our method still requires less
time. This is due mainly to the fact that our
method uses t  instead of N  to compute the
desired moments.

Object Recog ni tion

3-D moments as 2-D moments have been used 
in object recognition. In many cases those
moments are not used in their standard form,
this is, directly. They are combined some way
to obtain quantities a lit bit changing before set 
of transformations. We are talking about the
so-called invariant moments.

In the bi-dimensional case the well-known 
Hu moments, invariant to translations,
rotations and scale changes were derived and 
used since 30 years (Hu, 1962). In Flusser and
Suk (1993) and in Reiss (1991) arrived to the
other set of invariants, but before general
transformations (affine transformations). In
this section we present a set of experiments to 
test performance of invariants derived from
the set of the formulae proposed in section
moments of a ball in  metric d ∞.

Several invariants can be derived by means of 
the Fundamental Theorem of Moment
Invariants (FTMI), proposed in Sadjadi and
Hall (1980). Two of them are:

                            I J
J1

1
2

2
=                             (13)

                           I
J

2
2

1
3=

∆                             (14)

with

                 j1 200 020 002= + +µ µ µ                 (15)

J2 02 0 002 001
2

200 002 101
2

200 0 20 110
2= − + − + −µ µ µ µ µ µ µ µ µ

∆ 2

200 110 101

1 10 020 011

1 01 011 002

=












det
µ µ µ

µ µ µ
µ µ µ




The µ pqr  are computed as:

   µ pqr
R

p q rx x y y z z= − − −∑∑∑ ( ) ( ) ( )     (15)

with

x m
m

y m
m

z m
m

= = =100

00 0

010

000

001

000

, ,

In this section we show how the invariants 
moments obtained through the methodology
proposed in this paper can be used to
differentiate among 3-D objects. In the
experiments were used the three objects
shown in figure 1: A sphere of radius of 8
voxels, a pyramid with base of 25×25 voxels
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and a parallelepiped of 55×13×13   voxels.
Figure 2 shows three transformed versions
(translated, rotated and scaled) of the objects
of figure 1. Table 2 shows the values of the
corresponding transformations for each
object. Table 3 shows the values of the
invariant moments for each object’s image. In 
the Table the average times in seconds
invested for the computation of the
invariants; this includes the time used to
obtain the corresponding partitions.

Figure 3, shows the values of the com- puted
invariants for each object (sphere: , pyramid:
and parallelepiped: ). From this figure and
table 3 the reader can appreciate, in the one
hand, that except for class (sphere), the values
obtained for the other two classes (pyramid
and parallelepiped) change very little inside
each class. In the other hand, the differences in 
the invariants from class to class suggest that
any linear classifier could help to differentiate
among the three objects used. 

 Vol.VIII No.2 -abril-junio- 2007                 119

H. Sossa-Azuela, F.J. Cuevas, C. Aguilar-Ibañez and H. Benítez-Muñoz

Figure 1. The three objects used in the exper i ments

                        Object No.1                                             Object No.2                                                 Object No.3

Figure 2. Three trans formed versions (trans lated, rotated and scaled) of the objects of Figure 1
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Table 1. A compar ison of complexity in computing all the moments of order up to ( )p q r K+ + ≤ = 3  from a
discrete image of N N N× ×  voxels.

Figure 3. Values of invariant moments I1 and I2 for the trans formed versions of the objects of Figure 1

Transfor mati on
N of object M

Translati on Rotation i ndegr ees Change of scale

x y z W ith re spect
to x

Wit h respect
t o y

Wit hre spe ct
to z

Sca ling fa ctor

1,1 20 30 30 20 40 10 2

2,1 15 45 20 30 15 36 3

3,1 37 58 12 40 37 26 1.5

1,2 35 35 21 50 77 16 1.4

2,2 35 34 21 70 44 20 1.7

2,3 18 35 45 10 16 5 3

3,1 30 40 50 40 0 0 0.5

3,2 44 26 12 50 25 16 1.5

3,3 32 12 17 10 77 62 2.5

Table 2. Trans for ma tions used to obtain the objects of Figure 2



Conclu sions and Future Research

A new method to compute geometric
moments for a 3D object has been presented.
Initially, the object is partitioned in a set of
convex balls whose moment evaluation can
be reduced to the computation of very simple 
formulae. The resulting shape moments are
finally obtained by addition of the moments
of each ball forming the partition, giving that
the intersections are empty. Mathematical
Morphology was used to obtain the desired
partition of the shape. As the morphological
operations implied could be computed in a
massively parallel computer, the compu-
tation of geometric moments is extremely
very fast.

One of the main features of the proposed
method is that once the partition is obtained
its complexity is of O(N) .

Derived invariants derived through the
standard moments obtained by the proposed
methodology can be also used to differentiate 
among 3-D objects.

As a future work, we pretend to install this 
technology to sequential algorithms able to

compete with actual algorithms on those
computing platforms.
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