Metodologias e índices de segurança hídrica: uma revisão sistemática da aplicação em bacias e na indústria

Contenido principal del artículo

Jussara Ferreira-Santos
https://orcid.org/0000-0001-6310-3187
Renan Rodrigues Campos da Silva
https://orcid.org/0009-0000-5770-1316
Celso Bandeira de Melo Ribeiro
https://orcid.org/0000-0001-7017-4653

Resumen

A escassez hídrica, intensificada pelas mudanças climáticas e pelo crescimento populacional, representa um desafio global que afeta diretamente a segurança hídrica e, em particular, torna o setor industrial vulnerável devido à elevada demanda por água em seus processos. Este artigo apresenta uma revisão sistemática conduzida segundo a metodologia PRISMA e a estratégia PICO, com o objetivo de identificar e analisar as metodologias utilizadas para avaliação da segurança hídrica em diferentes contextos territoriais e setoriais, enfatizando as contribuições e lacunas relacionadas ao setor industrial. Foram identificadas diversas abordagens para avaliação da segurança hídrica, risco e vulnerabilidade, com destaque para métodos multicritério como AHP e suas variações (FAHP, BWM, Delphi, entropia), modelos fuzzy (FCE), estruturas conceituais como DPSIR e PSER, previsão cinza e sistemas de apoio à decisão (DSS). Muitas dessas metodologias foram aplicadas à construção de índices e indicadores voltados à análise de segurança hídrica urbana e rural, à avaliação de estresse hídrico e à sustentabilidade dos recursos hídricos. A análise de 26 estudos evidenciou tanto métodos consolidados quanto emergentes, frequentemente combinados com ferramentas analíticas e geoespaciais para aprimorar a precisão e a aplicabilidade dos resultados. Embora a busca bibliográfica tenha incluído explicitamente o termo “indústria”, poucas aplicações diretas foram encontradas, revelando uma lacuna significativa no uso dessas metodologias no setor. Ainda assim, os métodos identificados oferecem bases robustas para adaptações futuras, capazes de apoiar diagnósticos, previsões e decisões estratégicas em contextos industriais e em territórios sob crescente pressão hídrica.

Detalles del artículo

Cómo citar
[1]
Ferreira-Santos, J., Campos da Silva, R.R. y Ribeiro , C.B. de M. 2025. Metodologias e índices de segurança hídrica: uma revisão sistemática da aplicação em bacias e na indústria. Revista AIDIS de ingeniería y ciencias ambientales: Investigación, desarrollo y práctica. 18, 3 (dic. 2025), 267–285. DOI:https://doi.org/10.22201/iingen.0718378xe.2025.18.3.88517.

Citas en Dimensions Service

Citas

Aalirezaei, A., Khan, M. S. A., Kabir, G., Ali, S. M. (2021) Prediction of water security level for achieving sustainable development objectives in Saskatchewan, Canada: Implications for resource conservation in developed economies. Journal of Cleaner Production, 311, 127521. http://doi.org/10.1016/j.jclepro.2021.127521

Ahopelto, L., Veijalainen, N., Guillaume, J. H., Keskinen, M., Marttunen, M., Varis, O. (2019) Can there be water scarcity with abundance of water? Analyzing water stress during a severe drought in Finland. Sustainability, 11(6), 1548. http://doi.org/10.3390/su11061548

Alavijeh, N. K., Falahi, M. A., Shadmehri, M. T. A., Salehnia, N., Larsen, M. A. D., Drews, M. (2021) Perspectives of current and future urban water security in Iran. Journal of Cleaner Production, 321, 129004. http://doi.org/10.1016/j.jclepro.2021.129004

Babel, M. S., Shinde, V. R., Sharma, D., Dang, N. M. (2020) Measuring water security: A vital step for climate change adaptation. Environmental Research, 185, 109400. http://doi.org/10.1016/j.envres.2020.109400

Cao, J., Yan, Z., Wan, J., Wang, Y., Ye, G., Long, Y., Xie, Q. (2022) Comprehensive evaluation model for urban water security: A case study in Dongguan, China. Water, 14(23), 3957. http://doi.org/10.3390/w14233957

Chang, D.-Y. (1996) Applications of the extent analysis method on fuzzy AHP. European Journal of Operational Research, 95, 649-655. http://doi.org/10.1016/0377-2217(95)00300-2

Chen, W., Wu, S., Lei, Y., Li, S. (2017) China’s water footprint by province, and inter-provincial transfer of virtual water. Ecological Indicators, 74, 321-333. http://doi.org/10.1016/j.ecolind.2016.11.038

Chitsaz, N., Azarnivand, A. (2017) Water scarcity management in arid regions based on an extended multiple criteria technique. Water Resources Management, 31, 233-250. http://doi.org/10.1007/s11269-016-1521-5

Fayer, G. C., Pereira, J. C., Ribeiro, L. G., Ferreira, P. M., Bolotari Junior, N. (2018). Análise de riscos aplicadas aos aspectos hídricos de usinas siderúrgicas utilizando as ferramentas de Analytic Hierarchy Process (AHP) e Bayesian Belief Networks (BBN). 73º Congresso Anual da ABM, São Paulo, 1976-1988.

Fontaine, M. M., Steinemann, A. C. (2009) Assessing vulnerability to natural hazards: Impact-based method and application to drought in Washington State. Natural Hazards Review, 10(1), 11-18. http://doi.org/10.1061/(ASCE)1527-6988(2009)10:1(11)

Gui, Z., Chen, X., He, Y. (2021) Spatiotemporal analysis of water resources system vulnerability in the Lancang River Basin, China. Journal of Hydrology, 601, 126614. http://doi.org/10.1016/j.jhydrol.2021.126614

Hope, R., Hansen, K., Mutembwa, M., Schlessinger, S. (2012) Water security, risk and society – Key issues and research priorities for international development. Synthesis report submitted to UK Collaborative on Development Sciences by Oxford University Water Security Network.

Liu, M., Wei, J., Wang, G., Wang, F. (2017) Water resources stress assessment and risk early warning – A case of Hebei Province, China. Ecological Indicators, 73, 358-368. http://doi.org/10.1016/j.ecolind.2016.09.048

Nguyen, T. T., Ngo, H. H., Guo, W., Nguyen, H. Q., Luu, C., Dang, K. B., Li, Y., Zhang, X. (2020) New approach of water quantity vulnerability assessment using satellite images and GIS-based model: An application to a case study in Vietnam. Science of the Total Environment, 737, 139784. http://doi.org/10.1016/j.scitotenv.2020.139784

Ouzzani, M., Hammady, H., Fedorowicz, Z., Elmagarmid, A. (2016) Rayyan—a web and mobile app for systematic reviews. Systematic Reviews, 5, 210. http://doi.org/10.1186/s13643-016-0384-4

Pandey, V. P., Babel, M. S., Shrestha, S., Kazama, F. (2011) A framework to assess adaptive capacity of the water resources system in Nepalese river basins. Ecological Indicators, 11(2), 480-488. http://doi.org/10.1016/j.ecolind.2010.07.003

Qin, Y., Xiao, X., Wigneron, J. P., Ciais, P., Brandt, M., Fan, L., Li, X., Crowell, S., Wu, X., Doughty, R., Zhang, Y., Wang, X., Chen, B., Zhang, C., Song, L., Liu, F., Narteau, C., Wang, T., Niu, Z., Liu, Q., Yao, Y., Chen, J., Norouzi, H., Fernandez-Moran, R., Mialon, A., Law, B. E., Dirmeyer, P. A., Dolman, A. J., Ozdogan, M., Bible, K., McCabe, M. F., Van Der Schalie, R., Wigneron, J. P., Fan, L., Ciais, P., Brandt, M. (2019) Flexibility and intensity of global water use. Nature Sustainability, 2(6), 515-523. http://doi.org/10.1038/s41893-019-0294-5

Safavi, H. R., Golmohammadi, M. H., Sandoval-Solis, S. (2016) Scenario analysis for integrated water resources planning and management under uncertainty in the Zayandehrud River Basin. Journal of Hydrology, 539, 625-639. http://doi.org/10.1016/j.jhydrol.2016.05.064

Saraiva Okello, A. M. L., Masih, I., Uhlenbrook, S., Jewitt, G. P. W., Van Der Zaag, P., Riddell, E. (2015) Drivers of spatial and temporal variability of streamflow in the Incomati River Basin. Hydrology and Earth System Sciences, 19(2), 657-673. http://doi.org/10.5194/hess-19-657-2015

Schaefer, T., Udenio, M., Quinn, S., Fransoo, J. C. (2019) Water risk assessment in supply chains. Journal of Cleaner Production, 208, 636-648. http://doi.org/10.1016/j.jclepro.2018.10.090

Shafiei, M., Rahmani, M., Gharari, S., Davary, K., Abolhassani, L., Teimouri, M. S., Gharesifard, M. (2022) Sustainability assessment of water management at river basin level: Concept, methodology and application. Journal of Environmental Management, 316, 115201. http://doi.org/10.1016/j.jenvman.2022.115201

Tu, Y., Chen, K., Wang, H., Li, Z. (2020) Regional water resources security evaluation based on a hybrid fuzzy BWM-TOPSIS method. International Journal of Environmental Research and Public Health, 17(14), 4987. http://doi.org/10.3390/ijerph17144987

Wang, X., Chen, Y., Li, Z., Fang, G., Wang, Y. (2020) Development and utilization of water resources and assessment of water security in Central Asia. Agricultural Water Management, 240, 106297. http://doi.org/10.1016/j.agwat.2020.106297

Wang, X., Chen, Y., Fang, G., Li, Z., Liu, Y. (2022) The growing water crisis in Central Asia and the driving forces behind it. Journal of Cleaner Production, 378, 134574. http://doi.org/10.1016/j.jclepro.2022.134574

Wijitkosum, S., Sriburi, T. (2019) Fuzzy AHP integrated with GIS analyses for drought risk assessment: A case study from upper Phetchaburi River Basin, Thailand. Water, 11(5), 939. http://doi.org/10.3390/w11050939

Xiao, Z., Gao, J., Su, Y. (2019) China's water risk assessment and industrial source analysis based on the localization of WWF water risk assessment tools. Environmental Impact Assessment Review, 78, 106285. http://doi.org/10.1016/j.eiar.2019.106285

Yang, P., Zhang, S., Xia, J., Chen, Y., Zhang, Y., Cai, W., Wang, W., Wang, H., Luo, X., Chen, X. (2022) Risk assessment of water resource shortages in the Aksu River Basin of northwest China under climate change. Journal of Environmental Management, 305, 114394. http://doi.org/10.1016/j.jenvman.2021.114394

Zhang, C., Li, J., Zhou, Z., Sun, Y. (2021) Application of ecosystem service flows model in water security assessment: A case study in Weihe River Basin, China. Ecological Indicators, 120, 106974. http://doi.org/10.1016/j.ecolind.2020.106974

Zheng, X., Wang, C., Cai, W., Kummu, M., Varis, O. (2016) The vulnerability of thermoelectric power generation to water scarcity in China: Current status and future scenarios for power planning and climate change. Applied Energy, 171, 444-455. http://doi.org/10.1016/j.apenergy.2016.03.030

Zhou, F., Su, W., Zhang, F. (2019) Influencing indicators and quantitative assessment of water resources security in karst region based on PSER model – The case of Guizhou. Sustainability, 11(20), 5671. http://doi.org/10.3390/su11205671

Zhou, F., Zhang, W., Su, W., Peng, H., Zhou, S. (2021) Spatial differentiation and driving mechanism of rural water security in typical “engineering water depletion” of karst mountainous area – A lesson of Guizhou, China. Science of the Total Environment, 793, 148387. http://doi.org/10.1016/j.scitotenv.2021.148387

USEPA, United States Environmental Protection Agency (1995) Method 551.1: Determination of chlorination disinfection byproducts, chlorinated solvents, and halogenated pesticides/herbicides in drinking water by liquid-liquid extraction and gas chromatography with electron-capture detection. Relatório 1.0, 61 pp.

USEPA, United States Environmental Protection Agency (2009) National primary drinking water regulation. Relatório EPA HQ-OW-2023-0572, 23 pp.

USEPA. United States Environmental Protection Agency (2002) Trihalometanes in drinking water: sampling, analysis, monitoring and compilance. Relatório EPA 570/9-83-002, 53 pp.

Valentini, M. H. K., Santos, G. B., Franz, H. S., Loebens, L., Guedes, H. A. S., Vieira, B. M., Romani, R. F. (2021) Análise estatística de correlação e de variância do monitoramento da água bruta da Estação de Tratamento de Água Terras Baixas-Pelotas/RS. Revista Thema, 19(3), 600-614. Acesso em 14 de março de 2024, disponível em: https://doi.org/10.15536/thema.V19.2021.600-614.1702

Wu, J., He, F., Xu, D., Wang, R., Zhang, X., Xiao, E., Wu, Z. (2011) Phosphorus removal by laboratory-scale unvegetated vertical-flow constructed wetland systems using anthracite, steel slag and related blends as substrate. Revista Water Science and Technology, 63(11), 2719-2724. Acesso em 20 de janeiro de 2024, disponível em: https://doi.org/10.2166/wst.2011.573

Yang, F., Antonietti, M. (2020) Artificial humic acids: sustainable materials against climate change. Revista Advanced Science, 7(1), 1902992. Acesso em 01 de fevereiro de 2024, disponível em: https://doi.org/10.1002/advs.201902992