SENSORES DE MATERIAL PARTICULADO EN SUSPENSIÓN DE BAJO COSTO: INTEGRACIÓN AL MONITOREO DE LA CALIDAD DEL AIRE

Contenido principal del artículo

Dario Gomez
Julio Vassallo

Resumen

El avance del conocimiento sobre los efectos en salud que tienen las partículas atmosféricas, así como su influencia en el clima y potencial en calentamiento global, llevaron a exigir el control de sus niveles en el aire ambiente y a la determinación confiable de las concentraciones ambientales a nivel de superficie realizada en la mayoría de los países con instrumentos de referencia o equivalentes. Sin embargo, el costo y los recursos necesarios para la adquisición y operación de estos instrumentos de referencia dificultan la instalación de redes de vigilancia de la calidad del aire. En las últimas décadas, tuvo lugar a nivel internacional un gran desarrollo de sensores de los contaminantes atmosféricos que, a pesar de no ser reglamentarios, son portátiles, de menor costo y relativamente más sencillos de operar que los instrumentos de referencia. Los avances en microprocesadores y miniaturización permitieron el ingreso de estos sensores, facilitando un aumento inédito de su uso con fines no reglamentarios de evaluación de la calidad del aire. Aunque se acepta el empleo de sensores de bajo costo en el cuidado de la salud personal y pública, lo preocupante sobreviene cuando los datos obtenidos se emplean como sustitutivos o complementarios de las redes de referencia para vigilancia de la calidad del aire. El propósito de este artículo es contribuir a la discusión regional de criterios orientativos para el uso de sensores de partículas atmosféricas de bajo costo. El trabajo se basa en la revisión de medio centenar de artículos científicos publicados en la última década.

Detalles del artículo

Cómo citar
[1]
Gomez, D. y Vassallo, J. 2023. SENSORES DE MATERIAL PARTICULADO EN SUSPENSIÓN DE BAJO COSTO: INTEGRACIÓN AL MONITOREO DE LA CALIDAD DEL AIRE. Revista AIDIS de ingeniería y ciencias ambientales: Investigación, desarrollo y práctica. 16, 3 (dic. 2023), 1030–1052. DOI:https://doi.org/10.22201/iingen.0718378xe.2023.16.3.86568.

Citas

Ahn Ahn, K.H., Lee, H., Lee, H.D. and Kim, S.C. (2019). Extensive evaluation and classification of low‐cost dust sensors in laboratory using a newly developed test method. Indoor air, 30(1), 137-146.

Aix, M.L., Schmitz, S. and Bicout, D.J. (2023). Calibration methodology of low-cost sensors for high-quality monitoring of fine particulate matter. Science of The Total Environment, 889, 164063.

Alfano, B., Barretta, L., Del Giudice, A., De Vito, S., Di Francia, G., Esposito, E., Formisano, F., Massera, E., Miglietta, M.L. and Polichetti, T. (2020). A review of low-cost particulate matter sensors from the developers’ perspectives. Sensors, 20(23), 6819.

AQ-SPEC, Air Quality Sensor Performance Evaluation Center (2023a). Evaluations of criteria pollutants: summary for PM. Consultado el 18 de julio de 2023. Desde: http://www.aqmd.gov/aq-spec/evaluations/field

AQSPEC, Air Quality Sensor Performance Evaluation Center (2023b). Field test protocols. Consultado el 18 de julio de 2023. Desde: http://www.aqmd.gov/docs/default-source/aq-spec/

Austin, E., Novosselov, I., Seto, E. and Yost, M.G. (2015). Laboratory evaluation of the Shinyei PPD42NS low-cost particulate matter sensor. PloS one, 10(9), e0137789.

Brattich, E., Bracci, A., Zappi, A., Morozzi, P., Di Sabatino, S., Porcù, F., Di Nicola, F., Tositti, L. (2020). How to get the best from low-cost particulate matter sensors: Guidelines and practical recommendations. Sensors, 20(11), 3073.

Bulot, F.M.J., Russell, H.S., Rezaei, M., Johnson, M.S., Ossont, S.J.J., Morris, A.K.R., Basford, P.J., Easton, N.H.C., Foster, G.L., Loxham, M. and Cox, S.J. (2020). Laboratory comparison of low-cost particulate matter sensors to measure transient events of pollution. Sensors, 20(8), 2219.

Bulot, F. M., Ossont, S. J., Morris, A. K., Basford, P. J., Easton, N. H., Mitchell, H. L., Foster, G.L., Cox, S.J. and Loxham, M. (2023). Characterisation and calibration of low-cost PM sensors at high temporal resolution to reference-grade performance. Heliyon, 9(5).

Burtscher, H. (2005). Physical characterization of particulate emissions from diesel engines: a review. Journal of Aerosol Science, 36(7), 896-932.

Burtscher, H. (2021). Literature study on tailpipe particulate emissión measurement for diesel engines. Fachhochschule Aargau, University of Applied Science, CH 5210 Switzerland.

CEN, Comité Europeo de Normalización (2014). Método de medición gravimétrico normalizado para la determinación de la concentración másica PM10 o PM2,5 de la materia particulada en suspensión.

Chow, J.C. (1995). Measurement methods to determine compliance with ambient air quality standards for suspended particles. Journal of the Air & Waste Management Association, 45(5), 320-382.

Cohen, A. J., Brauer, M., Burnett, R., Anderson, H. R., Frostad, J., Estep, K., Balakrishnan, K., Brunekreef, B., Dandona, L., Dandona, R., Feigin, V., Freedman, G., Hubbell, B., Jobling, A., Kan, H., Knibbs, L, Liu, Y., Martin, R., Morawska, L., Pope III, C.A., Shin, H., Straif, K., Shaddick, G., Thomas, M., van Dingenen, R., van Donkelaar, A., Vos, T., Murray, C.J.L., Forouzanfar, M.H. and Forouzanfar, M. H. (2017). Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. The Lancet, 389(10082), 1907-1918.

Concas, F., Mineraud, J., Lagerspetz, E., Varjonen, S., Liu, X., Puolamäki, K., Nurmi, P. and Tarkoma, S. (2021). Low-cost outdoor air quality monitoring and sensor calibration: A survey and critical analysis. ACM Transactions on Sensor Networks (TOSN), 17(2), 1-44.

Craft, E., Nowlan, A. Rickenbacker, H.; Uennatornwaranggoon, F. (2021). Hacer visible lo invisible: una guía para el mapeo de la contaminación del aire hiperlocal para impulsar acciones por un aire limpio. Environmental Defense Fund.

Crilley, L. R., Shaw, M., Pound, R., Kramer, L. J., Price, R., Young, S., Lewis, A.C. and Pope, F. D. (2018). Evaluation of a low-cost optical particle counter (Alphasense OPC-N2) for ambient air monitoring. Atmospheric Measurement Techniques, 11(2), 709-720.

Dacunto, P.J., Klepeis, N.E., Cheng, K.C., Acevedo-Bolton, V., Jiang, R.T., Repace, J.L., Ott, W.R. and Hildemann, L.M. (2015). Determining PM 2.5 calibration curves for a low-cost particle monitor: commo Determining PM 2.5 calibration curves for a low-cost particle monitor: common indoor residential aerosols n indoor residential aerosols. Environmental Science: Processes & Impacts, 17(11), 1959-1966.

DEFRA, Department of Environment, Food and Federal Affairs (2018). AQEG advice on the use of ‘low-cost’ pollution sensors. Consultado el 18 de agosto de 2023. Desde: https://uk-air.defra.gov.uk/research/aqeg/pollution-sensors.php

Di Antonio, A., Popoola, O.A., Ouyang, B., Saffell, J. and Jones, R.L. (2018). Developing a relative humidity correction for low-cost sensors measuring ambient particulate matter. Sensors, 18(9), 2790.

Dijkhoff, I. M., Drasler, B., Karakocak, B. B., Petri-Fink, A., Valacchi, G., Eeman, M. and Rothen-Rutishauser, B. (2020). Impact of airborne particulate matter on skin: A systematic review from epidemiology to in vitro studies. Particle and fibre toxicology, 17(1), 1-28.

Dockery, D. W., Pope, C. A., Xu, X., Spengler, J. D., Ware, J. H., Fay, M. E., Ferris, B. G., Speizer, F. E. (1993). An association between air pollution and mortality in six US cities. New England journal of medicine, 329(24), 1753-1759.

DOUE Departamento Oficial de la Unión Europea, (2008). Directiva 2008/50/CE del Parlamento Europeo y del Consejo, de 21 de mayo de 2008, relativa a la calidad del aire ambiente y a una atmósfera más limpia en Europa., DOUE-L-2008-81053.

Duvall, R., Clements, A., Hagler, G., Kamal, A., Kilaru, V., Goodman, L., Frederick, S., Johnson Barkjohn, K., VonWald, I., Greene, D. and Dye, T. (2021a). Performance testing protocols, metrics, and target values for ozone air sensors: use in ambient, outdoor, fixed site, non-regulatory and informational monitoring applications. U.S. EPA Office of Research and Development, Washington, DC, EPA/600/R-20/279.

Duvall, R., Clements, A., Hagler, G., Kamal, A., Kilaru, V., Goodman, L., Frederick, S., Johnson Barkjohn, K., VonWald, I., Greene, D. and Dye, T. (2021b). Performance testing protocols, metrics, and target values for fine particulate matter air sensors: use in ambient, outdoor, fixed site, non-regulatory and informational monitoring applications. U.S. EPA Office of Research and Development, Washington, DC, EPA/600/R-20/280.

Fuzzi S., Baltensperger, U., Carslaw, K., Decesari, S., Denier van der Gon, H., Facchini, M.C., Fowler, D., Koren, I., Langford, B., Lohmann, U., Nemitz, E., Pandis, S., Riipinen, I., Rudich, Y., Schaap, M., Slowik, J.G., Spracklen, D.V., Vignati, E., Wild, M., Williams M. and Gilardoni, S. (2015). Particulate matter, air quality and climate: lessons learned and future needs, Atmospheric Chemistry and Physics Discussions, 15, 521–744.

Giechaskiel, B., Dilara, P., Sandbach, E. and Andersson, J. (2008). Particle measurement programme (PMP) light-duty inter-laboratory exercise: comparison of different particle number measurement systems. Measurement Science and Technology, 19(9), 095401.

Gilliam, J. y Hall, E. (2016). Reference and equivalent methods used to measure national ambient air quality standards (naaqs) criteria air pollutants-volume I. US Environmental Protection Agency, Washington, DC.

Giordano, M.R., Malings, C., Pandis, S.N., Presto, A.A., McNeill, V.F., Westervelt, D.M., Beejmann, M. and Subramanian, R. (2021). From low-cost sensors to high-quality data: A summary of challenges and best practices for effectively calibrating low-cost particulate matter mass sensors. Journal of Aerosol Science, 158, 105833.

Hagan, D.H. y Kroll, J.H. (2020). Assessing the accuracy of low-cost optical particle sensors using a physics-based approach. Atmospheric measurement techniques, 13(11), 6343-6355.

Hamra, G.B., Guha, N., Cohen, A., Laden, F., Raaschou-Nielsen, O., Samet, J.M., Vineis, P. Forastiere, F., Saldiva, P. Yorifuji, T. and Loomis, D. (2014). Outdoor particulate matter exposure and lung cancer: a systematic review and meta-analysis. Environmental health perspectives, 122(9), 906-911.

Hapidin, D.A., Saputra, C., Maulana, D.S., Munir, M.M. and Khairurrijal, K. (2019). Aerosol chamber characterization for commercial particulate matter (PM) sensor evaluation. Aerosol and Air Quality Research, 19(1), 181-194.

IARC, International Agency for Research on Cancer (2012). Diesel engine exhaust carcinogenicity. Journal of the National Cancer Institute. Lyon, France: World Health Organization. doi:10.1093/jnci/djs034., 2012.

Jiang, Y., Zhu, X., Chen, C., Ge, Y., Wang, W., Zhao, Z., Cai, J. and Kan, H. (2021). On-field test and data calibration of a low-cost sensor for fine particles exposure assessment. Ecotoxicology and environmental safety, 211, 111958.

Kim, K. H., Kabir, E., & Kabir, S. (2015). A review on the human health impact of airborne particulate matter. Environment international, 74, 136-143.

Kuula, J., Mäkelä, T., Aurela, M., Teinilä, K., Varjonen, S., González, Ó. and Timonen, H. (2020). Laboratory evaluation of particle-size selectivity of optical low-cost particulate matter sensors. Atmospheric Measurement Techniques, 13(5), 2413-2423.

Liu, C., Chen, R., Sera, F., Vicedo-Cabrera, A.M., Guo, Y., Tong, S., Coelho, M.S.Z.S., Saldiva, P.H.N., Lavigne, E., Matus, P., Valdes Ortega, N., Osorio Garcia, S., Pascal, M., Stafoggia, M., Scortichini, M., Hashizume, M., Honda, Y., Hurtado-Díaz, M., Cruz, J., Nunes, B., Teixeira, J.P., Kim, H., Tobias, A., Íñiguez, C., Forsberg, B., Åström, C., Ragettli, M.S., Guo, Y.-L., Chen, B.-Y., Bell, M.L., Wright, C.Y., Scovronick, N., Garland, R.M., Milojevic, A., Kyselý, J., Urban, A., Orru, H., Indermitte, E., Jaakkola, J.J.K., Ryti, Niilo, R.I., Katsouyanni, K., Analitis, A., Zanobetti, A., Schwartz, J., Chen, J., Wu, T., Cohen, A., Gasparrini, A., Kan, H. (2019). Ambient particulate air pollution and daily mortality in 652 cities. New England Journal of Medicine, 381(8), 705-715.

Malings, C., Tanzer, R., Hauryliuk, A., Saha, P. K., Robinson, A. L., Presto, A. A. and Subramanian, R. (2020). Fine particle mass monitoring with low-cost sensors: Corrections and long-term performance evaluation. Aerosol Science and Technology, 54(2), 160-174.

MCERTS Monitoring Certification Scheme (2017). Performance standards for indicative ambient particulate monitors. United Kingdom Environment Agency.

McFarlane, C., Raheja, G., Malings, C., Appoh, E.K., Hughes, A.F. and Westervelt, D.M. (2021). Application of Gaussian mixture regression for the correction of low cost PM2. 5 monitoring data in Accra, Ghana. ACS Earth and Space Chemistry, 5(9), 2268-2279.

McMurry, P.H. (2000). A review of atmospheric aerosol measurements. Atmospheric Environment, 34(12-14), 1959-1999.

Molina Rueda, E., Carter, E., L’Orange, C., Quinn, C. and Volckens, J. (2023). Size-Resolved Field Performance of Low-Cost Sensors for Particulate Matter Air Pollution. Environmental Science & Technology Letters, 10(3), 247-253.

Morawska, L., Thai, P. K., Liu, X., Asumadu-Sakyi, A., Ayoko, G., Bartonova, A., Bedini, A., Chai, F. Christensen, B., Dunbabin, M., Gao, J., Hagler, G.S.W., Jayaratne, R., Kumar, P., Lau, A.K.H., Louie, P.K.K., Mazaheri, M., Ning, Z., Motta, N., Mullins, B., Rahman, M., Ristovski, Z., Shafiei, M., Tjondronegoro, D., Westerdahl, D. and Williams, R. (2018). Applications of low-cost sensing technologies for air quality monitoring and exposure assessment: How far have they gone? Environment international, 116, 286-299.

Narayana, M.V., Jalihal, D. and Nagendra, S.S. (2022). Establishing a sustainable low-cost air quality monitoring setup: A survey of the state-of-the-art. Sensors, 22(1), 394.

Nazarenko, Y., Pal, D. and Ariya, P.A. (2021). Air quality standards for the concentration of particulate matter 2.5, global descriptive analysis. Bulletin of the World Health Organization, 99(2), 125.

Nemmar, A., Hoet, P.M., Vanquickenborne, B., Dinsdale, D., Thomeer, M., Hoylaerts, M.F., Vanbilloen, H., Mortelmans, L. and Nemery, B. (2002). Passage of inhaled particles into the blood circulation in humans. Circulation, 105(4), 411-414.

Noble, C.A., Vanderpool, R.W., Peters, T.M., McElroy, F.F., Gemmill, D.B. and Wiener, R.W. (2001). Federal reference and equivalent methods for measuring fine particulate matter. Aerosol science & technology, 34(5), 457-464.

Northcross, A.L., Edwards, R.J., Johnson, M.A., Wang, Z.M., Zhu, K., Allen, T. and Smith, K.R. (2013). A low-cost particle counter as a realtime fine-particle mass monitor. Environmental Science: Processes & Impacts, 15(2), 433-439.

Omidvarborna, H., Kumar, P. and Tiwari, A. (2020). ‘Envilution™’chamber for performance evaluation of low-cost sensors. Atmospheric Environment, 223, 117264.

OMS, Organización Mundial de la Salud (2022). Contaminación del aire ambiente (exterior). Consultada el 4 de febrero de 2023. Desde: https://www.who.int/es/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health

Papapostolou, V., Zhang, H., Feenstra, B.J. and Polidori, A. (2017). Development of an environmental chamber for evaluating the performance of low-cost air quality sensors under controlled conditions. Atmospheric Environment, 171, 82-90.

Pope III, C.A. (2000). Epidemiological basis for particulate air pollution health standards. Aerosol Science & Technology, 32(1), 4-14.

Pope, C.A., Thun, M.J., Namboodiri, M.M., Dockery, D.W., Evans, J.S., Speizer, F.E. and Heath, C.W. (1995). Particulate air pollution as a predictor of mortality in a prospective study of US adults. American journal of respiratory and critical care medicine, 151(3), 669-674.

Sousan, S., Koehler, K., Thomas, G., Park, J.H., Hillman, M., Halterman, A. and Peters, T.M. (2016). Inter-comparison of low-cost sensors for measuring the mass concentration of occupational aerosols. Aerosol Science and Technology, 50(5), 462-473.

US EPA, Environmental Protection Agency (2013). EPA’s next generation air monitoring workshop series, air sensors 2013 – final workshop materials. Consultado el 14 de agosto de 2023. Desde: https://sites.google.com/site/airsensors2013/final-materials

US EPA, Environmental Protection Agency (2022a). Subchapter C- Air programs. Part 53-Ambient air monitoring reference and equivalent methods. Consultado el 14 de agosto de 2023. Desde: https://www.ecfr.gov/current/title-40/chapter-I/subchapter-C/part-53

US EPA, Environmental Protection Agency (2022b). 40 CFR Parts 53 and 58 Title 40 Chapter I Subchapter C Part 53 Subpart C [EPA–HQ–OAR–2004–0018; FRL–8227–2]. Consultado el 14 de agosto de 2023. Desde: https://www.ecfr.gov/current/title-40/part-53/subpart-C.

Vidal, N., Witenas, F., Blasi, J., Ristori, P. y Vassallo, J. (2022). El monitoreo de la calidad del aire (pm2.5) con sensores de bajo costo: salud versus economía. Revista Ingeniería Sanitaria y Ambiental (ISA), 143, 46-50.

Waldén, J., Waldén, T., Laurila, S. and Hakola, H. (2017). Demonstration of the equivalence of PM2. 5 and PM10 measurement methods in Kuopio 2014-2015. Finnish Meteorological Institute ISBN 978-952-336-010-5 (pdf). ISSN 0782-6079. Helsinki 2017 (UE GDE).

Wang, Y., Li, J., Jing, H., Zhang, Q., Jiang, J. and Biswas, P. (2015). Laboratory evaluation and calibration of three low-cost particle sensors for particulate matter measurement. Aerosol science and technology, 49(11), 1063-1077.

WHO, World Health Organization (2021). Who global air quality guidelines particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide.

Wriedt, T. (2012). Mie theory: a review. In Hergert, W. and Wriedt, T. (Eds.), The Mie Theory, Springer Series in 53 Optical Sciences 169, DOI: 10.1007/978-3-642-28738-1_2, 53-71.

Zheng, T., Bergin, M.H., Johnson, K.K., Tripathi, S.N., Shirodkar, S., Landis, M.S., Sultaria, R. and Carlson, D. E. (2018). Field evaluation of low-cost particulate matter sensors in high-and low-concentration environments. Atmospheric Measurement Techniques, 11(8), 4823-4846.