Production of activated charcoal from pyrolysis of
Main Article Content
Abstract
The search for sustainable and economically viable alternatives for the use of biomass has been motivated by the environmental impacts caused by the use of fossil fuels in energy generation, by the increase in the price of oil — a non-renewable source — and by the abundance of agro-industrial residues. Furthermore, biomass represents a source of renewable energy. As Brazil is the largest producer of oranges in the world, a large amount of residual biomass is generated, not always receiving an adequate final destination, which can cause environmental damage. Therefore, the objective of this study is to convert orange peel into activated carbon through the pyrolysis process and to characterize the resulting product. Dry biomass was characterized through immediate analysis: moisture content (0.88%), ash content (1.36%), volatile material (85.37%), fixed carbon content (12.39%) and density (0.44%). The thermal degradation of the residue was carried out in a fixed bed reactor, at two different temperatures (500 °C and 600 °C) for 30 minutes of degradation, at a rate of 30 °C/min. The activated carbon yield was 27.092% during the pyrolysis performed at 500°C, while it reached 18.094% in the pyrolysis at 600°C. After the conclusion of the pyrolysis experiments, the collection, storage and characterization of samples of adsorbent material produced during this process were carried out. The characterization was carried out using the same parameters that were applied in the analysis of dried orange peel. In addition, a methylene blue adsorption test was conducted on an orbital shaker table, following a face-centered design plan with 11 different combinations of mass and dye concentration. The adsorption time was kept constant at 30 minutes, and the volume of the solution used in all tests was set at 30 mL. The experiment revealed that the adsorption capacity of this carbon becomes more efficient with a low amount of mass and a high concentration of methylene blue dye. After analyzing the results, the efficiency of using orange peel biomass in the production of activated carbon, with adsorbent capacity, through pyrolysis, can be seen.
Article Details
Citas en Dimensions Service
References
Aguiar, L., Márquez-Montesinos, F., Gonzalo, A., Sánchez, J. L., Arauzo, J. (2008) Influence of temperature and particle size on the fixed bed pyrolysis of orange peel residues. Journal of Analytical and Applied Pyrolysis, 83, 124-130. https://doi:10.1016/j.jaap.2008.06.009
Brito, M. R., Arruda, M. G., Pedroza, M. M., Fagnani, H. M. C., Jaconi, A., Rambo, M. K. D. (2021) Use of low-cost adsorbent derived from the brazilian cerrado biome to remove pollutants in effluent. Research, Society and Development, 10(13),58101321154. https://doi:10.33448/rsd-v10i13.21154
Heylmann, K.K.A., Lopes, B.V., Afonso, T.F., Demarco, C.F., Cadaval-Junior, T.R., Quadro, M.S., Andreazza, R. (2021) Produção, caracterização e aplicação de carvão ativado de caroço de pêssego no tratamento de efluente têxtil. Eng Sanit Ambient, 26, 485-494. https://doi:10.1590/S1413-415220190226
Hosseinzaei, B., Hadianfard, M. J., Aghabarari, B., García-Rollán, M., Ruiz-Rosas, R., Rosas, J. M., Rodríguez-Mirasol, J., Cordero, T. (2022) Pyrolysis of pistachio shell, orange peel and saffron petals for bioenergy production. Bioresource Technology Reports, 19, 101209. https://doi:10.1016/j.biteb.2022.101209
Jia, Y., Li, Z., Wang, Y., Wang, X., Lou, C., Xiao, B., Lim, M. (2021) Visualization of Combustion Phases of Biomass Particles: Effects of Fuel Properties. ACS Omega, 42, 27702-27710. https://doi:10.1021/acsomega.1c02783
Lam, S. S., Liew, R. K., Wong, Y. M., Yek, P. N. Y., Ma, N. L., Lee, C. L., Chase, H. A. (2017). Microwave-assisted pyrolysis with chemical activation, an innovative method to convert orange peel into activated carbon with improved properties as dye adsorbent. Journal of Cleaner Production, 162, 1376–1387. https://doi:10.1016/j.jclepro.2017.06.131
Lopes, C.W., Bertella, F., Pergher, S.B.C., Finger, P.H., Dallago, R.M., Penha, F.G. (2013) Síntese e caracterização de carvões ativados derivados do sabugo de milho. Perspectiva (Erechim), 37, 27-35. https://www.uricer.edu.br/site/pdfs/perspectiva/139_360.pdf
Naves, P. J. S. (2022) Degradação térmica de bagaço de laranja visando produção de carvão ativado e sua aplicação como adsorvente de corante químico. Trabalho de Conclusão de Curso, IFTO, Engenharia Civil. Palmas, 40 pp.
Paz, E.C.S., Paschoalato, C.F., Arruda, M.G., Silva, G.G., Santos, M.G.L., Pedroza, M. M., Oliveira, L.R.A. (2023) Production and characterization of the solid product of coconut pyrolysis. Biomass Conv. Bioref, 13, 6317–6329. https://doi:10.1007/s13399-021-01561-3
Pedroza, M.M., de Oliveira, M.C.C.R., Paz, E.C.S., Arruda, M.G., Zukowski-Junior, J.C., Lôbo, R.N. (2022) Mass balance and characterization of bio-oil from sludge pyrolysis generated in the treatment of effluent from the biodiesel industry. J Mater Cycles Waste Manag ,5, 1-11. https://doi.org/10.1007/s10163-022-01478-7
Pedroza, M.M., Gomes, M.C.F.A., Paz, E.C.S., Pedrosa, A.L., Vieira, G.E.G., Soares, J.E.M. (2017) Aproveitamento Energético de Resíduos Sólidos Urbanos em Processo de Pirólise. Revista Brasileira de Energias Renováveis, 6, 1-24p. Acesso em: 15 mar. 2023. Disponível em: https://revistas.ufpr.br/rber/article/view/46577/pdf.
Sánchez, M. E., Menéndez, J. A., Domínguez, A., Pis, J. J., Martínez, O., Calvo, L. F., & Bernad, P. L. (2009). Effect of pyrolysis temperature on the composition of the oils obtained from sewage sludge. Biomass and Bioenergy, 33, 933–940. https://doi:10.1016/j.biombioe.2009.02.002
Santos, C.M, Dweck, J., Viotto, R.S., Rosa, A.H., Morais, L.C. (2015) Application of orange peel waste in the production of solid biofuels and biosorbents. Bioresource Technology, 196, 469-479. https://doi:10.1016/j.biortech.2015.07.114
Santos, J. C., Marton, J. M., & Felipe, M. G. A. (2014) Continuous System of Combined Columns of Ion Exchange Resins and Activated Charcoal as a New Approach for the Removal of Toxics from Sugar Cane Bagasse Hemicellulosic Hydrolysate. Industrial & Engineering Chemistry Research, 53, 16494–16501. https://doi:10.1021/ie502712j
Selvarajoo, A., Wong, Y.L., Khoo, K.S., Chen, W., Show, P. L. (2022) Biochar production via pyrolysis of citrus peel fruit waste as a potential usage as solid biofuel. Chemosphere, 294, 133671. https://doi:10.1016/j.chemosphere.2022.133671
Tariq, R., Zaifullizan, Y. M., Salema, A. A., Abdulatif, A., Ken, L. S. (2022) Co-pyrolysis and co-combustion of orange peel and biomass blends: Kinetics, thermodynamic, and ANN application. Renewable Energy, 198, 399-414. https://doi:/10.1016/j.renene.2022.08.049
Usda. United States Department of Agriculture (2023) Acesso em: 24 de março de 2023. Disponível em: https://www.fas.usda.gov/data/citrus-world-markets-and-trade.
Yusop, M. F. M., Ahmad, M. A., Rosli, N. A., & Manaf, M. E. A. (2021) Adsorption of cationic methylene blue dye using microwave-assisted activated carbon derived from acacia wood: Optimization and batch studies. Arabian Journal of Chemistry, 14, 103122. https://doi:10.1016/j.arabjc.2021.103122
Zanatta, E. R., Reinehr, T. O., Awadallak, J. A., Kleinübing, S. J., dos Santos, J. B. O., Bariccatti, R. A., da Silva, E. A. (2016) Kinetic studies of thermal decomposition of sugarcane bagasse and cassava bagasse. Journal of Thermal Analysis and Calorimetry, 125, 437–445. https://doi:10.1007/s10973-016-5378-x

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.