REMOÇÃO DE CORANTES EM EFLUENTE TÊXTIL UTILIZANDO BIOCARVÃO DE FOLHAS DE Persea americana Mill.: ESTUDO ISOTÉRMICO E COLUNA DE ADSORÇÃO

Contenido principal del artículo

Fabíola Tomassoni
Elisângela Edila Schneider
Cristiane Lisboa Giroletti
Maria Eliza Nagel-Hassemer

Resumen

A indústria têxtil gera grandes volumes de efluentes com alta concentração de corantes. O tratamento destes efluentes com adsorventes alternativos têm sido investigado. Estudos preliminares demonstraram que o biocarvão produzido com folhas de Persea americana Mill. foi eficiente na remoção de corantes. Assim, de forma complementar, o presente trabalho avaliou a eficiência de remoção dos corantes Levafix Brilliant Red e Remazol Preto B em efluente têxtil sintético com o adsorvente em duas etapas: a) estudos isotérmicos e b) ensaios em coluna de adsorção com fluxo contínuo. Cinco modelos isotérmicos foram estudados. O modelo de Langmuir foi o que melhor se ajustou aos dados, com RL de 0.001, indicando que a adsorção é favorável. Nas colunas de adsorção, a capacidade máxima de adsorção dos corantes foi de 8.71 mg.g-1 de adsorvente. Logo, o estudo demonstrou que o adsorvente alternativo pode ser utilizado para remoção eficiente dos corantes em processo contínuo. 

Detalles del artículo

Cómo citar
[1]
Tomassoni, F. , Schneider, .E.E., Giroletti, C.L. y Nagel-Hassemer, M.E. 2023. REMOÇÃO DE CORANTES EM EFLUENTE TÊXTIL UTILIZANDO BIOCARVÃO DE FOLHAS DE Persea americana Mill.: ESTUDO ISOTÉRMICO E COLUNA DE ADSORÇÃO. Revista AIDIS de ingeniería y ciencias ambientales: Investigación, desarrollo y práctica. 16, 3 (dic. 2023), 939–953. DOI:https://doi.org/10.22201/iingen.0718378xe.2023.16.3.84674.

Citas

Adinata, D., Daud, W.M.A.W., Aroua, M.K. (2007) Preparation and characterization of activated carbon from palm shell by chemical activation with K2CO3, Bioresource Technology, 98, 145-149. https://doi.org/10.1016/j.biortech.2005.11.006

Ahmed, M. (2017) Application of raw and activated Phragmites australis as potential adsorbents for wastewater treatments, Ecological Engineering, 102, 262-269. https://doi.org/10.1016/j.ecoleng.2017.01.047

ABIT, Associação Brasileira da Indústria Têxtil e Confecção (2022) Perfil do Setor – Dados Gerais do setor referentes a 2022. São Paulo. ABIT, 2022.

Al-Tohamy, R., S.Ali, S., Li, F., Okasha, K.M., Mahmoud, Y.A.G., Elsamahy, T., Jiao, H., Fu, Y., Sun, J. (2022) A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety, Ecotoxicology and Environmental Safety, 231, 113-160. https://doi.org/10.1016/j.ecoenv.2021.113160

Bharali, R.K., Bhattacharyya, K.G. (20115) Biosorption of fluoride on Neem (Azadirachta indica) leaf powder, Journal of Environmental Chemical Engineering, 3, 662-669. https://doi.org/10.1016/j.jece.2015.02.007

Bulgariu, L., Escudero, L.B., Bello, O.S., Iqbal, M., Nisar, J., Adegoke, K.A., Alakhras, F., Kornaros, M., Anastopoulos, L. (2019) The utilization of leaf-based adsorbents for dyes removal: A review, Journal of Molecular Liquids, 276, 728-747. https://doi.org/10.1016/j.molliq.2018.12.001

Cavas, L., Karabay, Z., Alyuruk, H., Dogan, H., Demir, G. (2011) Thomas and artificial neural network models for the fixed-bed adsorption of methylene blue by a beach waste Posidonia oceanica (L.) dead leaves, Chemical Engineering Journal, 171, 557-562. https://doi.org/10.1016/j.cej.2011.04.030

Chen, J.P., Yoon, J.T., Yiacoumi, S. (2003) Effects of chemical and physical properties of influent on copper sorption onto activated carbon fixed-bed columns, Carbon, 41, 1635-1644. https://doi.org/10.1016/S0008-6223(03)00117-9

CONAMA, Conselho Nacional do Meio Ambiente (2005) Resoluções do CONAMA: Dispõe sobre a classificação dos corpos de água e diretrizes ambientais para o seu enquadramento, bem como estabelece as condições e padrões de lançamento de efluentes, e dá outras providências, n.357, de 17/08/2005, Brasília, SEMA.

Dabrowski, A. (2001) Adsorption — from theory to practice, Advances in Colloid and Interface Science, 93, 135-224. https://doi.org/10.1016/S0001-8686(00)00082-8

Divya, J.M., Palak, K., Vairavel, P. (2020) Optimization, kinetics, equilibrium isotherms, and thermodynamics studies of Coomassie violet dye adsorption using Azadirachta indica (Neem) leaf adsorbent, Desalination and Water Treatment, 190, 353-382. https://doi.org/10.5004/dwt.2020.25706

Fávere, V.T., Riella, H.G., Rosa, S. (2010) Cloreto de n-(2-hidroxil) propil-3-trimetil amônio quitosana como adsorvente de corantes reativos em solução aquosa, Química Nova, 33, 1476–1481. https://doi.org/10.1590/S0100-40422010000700010

Febrianto, J., Kosasih, A.N., Sunarso, J., Ju, Y., Indraswati, N., Ismadji, S. (2009) Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: a summary of recent studies, Journal of Hazardous Materials, 162, 616-645. https://doi.org/10.1016/j.jhazmat.2008.06.042

Foo, K., Hameed, B.H. (2010) Insights into the modeling of adsorption isotherm systems, Chemical Engineering Journal, 156, 2-10. https://doi.org/10.1016/j.cej.2009.09.013

FAO, Food and Agriculture Organization of The United Nations (2017) Faostat. Statistics database, 2017.

Garba, Z.N., Lawan, I., Zhou, W., Zhang, M., Wang, L., Yuan, Z. (2020) Microcrystalline cellulose (MCC) based materials as emerging adsorbents for the removal of dyes and heavy metals – A review, Science of The Total Environment, 717. https://doi.org/10.1016/j.scitotenv.2019.135070

Geremew, B., Zewde, D. (2022) Hagenia abyssinica leaf powder as a novel low-cost adsorbent for removal of methyl violet from aqueous solution: Optimization, isotherms, kinetics, and thermodynamic studies, Environmental Technology & Innovation, 28. https://doi.org/10.1016/j.eti.2022.102577

Govarthanan, M., Liang, Y., Kamala-Kannan, S., Kim, W. (2022) Eco-friendly and sustainable green nano-technologies for the mitigation of emerging environmental pollutants, Chemosphere, 287. https://doi.org/10.1016/j.chemosphere.2021.132234

Guirardello, R. (2006) Removal of nickel (II) ions from aqueous solution by biosorption in a fixed bed column: Experimental and theorical breakthrough curves, Biochemical Engineering Journal, 30, 184-191. https://doi.org/10.1016/j.bej.2006.04.001

Kavitha, G., Kumar, J.V., Devanesan, S., Asemi, N.N., Manikandam, V., Arulmozhi, R., Abirami, N. (2022) Ceria nanoparticles anchored on graphitic oxide sheets (CeO2-GOS) as an efficient catalyst for degradation of dyes and textile effluents, Environmental Research, 209. https://doi.org/10.1016/j.envres.2022.112750

Lan, D., Zhu, H., Zhang, J., Li, S., Chen, Q., Wang, C., Wu, T., Xu, M. (2022) Adsorptive removal of organic dyes via porous materials for wastewater treatment in recent decades: A review on species, mechanisms and perspectives, Chemosphere, 293, 133-464. https://doi.org/10.1016/j.chemosphere.2021.133464

León, V.B., Negreiros, B.A.F., Brusamarello, C.Z., Petroli, G., Domenico, M.D., Souza, F.B. (2020) Artificial neural network for prediction of color adsorption from an industrial textile effluent using modified sugarcane bagasse: Characterization, kinetics and isotherm studies, Environmental Nanotechnology, Monitoring & Management, 14, 100-387. https://doi.org/10.1016/j.enmm.2020.100387

Liu, Y., Kang, Y., Mu, B., Wang, A. (2014) Attapulgite/bentonite interactions for methylene blue adsorption characteristics from aqueous solution, Chemical Engineering Journal, 237, 403-410. https://doi.org/10.1016/j.cej.2013.10.048

Meghana, C., Juhi, B., Rampal, N., Vairavel, P. (2020) Isotherm, kinetics, process optimization and thermodynamics studies for removal of Congo red dye from aqueous solutions using Nelumbo nucifera (Lótus) leaf adsorbent, Desalination and Water Treatment, 207, 373-397. https://doi.org/10.5004/dwt.2020.26389

Mo, J., Hwang, J.E., Jegal, J., Kim, J. Pretreatment of a dyeing wastewater using chemical coagulants. Dyesand Pigments, 72, 240-245. https://doi.org/10.1016/j.dyepig.2005.08.022

Muniyandi, M., Govindaraj, P., Balji, G.B. (2021) Potential removal of Methylene Blue dye from synthetic textile effluent using activated carbon derived from Palmyra (Palm) shell, Materialstoday: Proceedings, 47, 299-311. https://doi.org/10.1016/j.matpr.2021.04.468

Nascimento, R.F., Lima, A.C.A., Vidal, C.B., Melo, D.Q., Raulino, G.S.C. (2014) Adsorção aspectos teóricos e aplicações ambientais. 1 ed. Fortaleza: Imprensa Universitária, 256p. https://doi.org/10.13140/RG.2.1.4340.1041

Priyantha, N., Romzi, A.A., Chan, C.M., Lim, L.B.L. (2021) Enhancing adsorption of crystal violet dye through simple base modification of leaf adsorbent: isotherm, kinetics, and regeneration, Desalination and Water Treatment, 215, 194-205. https://doi.org/10.5004/dwt.2021.26758

Ramos, M.D.N., Santana, C.S., Velloso, C.C.V., Silva, A.H.M., Magalhães, F., Aguiar, A. (2021) A review on the treatment of textile industry effluents through Fenton processes, Process Safety and Environmental Protection, 155, 366-386. https://doi.org/10.1016/j.psep.2021.09.029

Ross, B.Z.L., Posseti, G.R.C. (2018) Tecnologias potenciais para o saneamento: remoção de metais de águas de abastecimento público. Curitiba: Sanepar. Disponível em: https://site.sanepar.com.br/sites/site.sanepar.com.br/files/publicacoes/livro_tecnologias_potenciais_vol2.pdf

Tomassoni, F., Schneider, E.E., Giroletti, C. L., Lobo-Recio, M.A., Nagel-Hassemer, M. E., Lapolli, F. R. (2022) A new adsorbent from avocado leaves: production, characterization, and optimization of its use, Environmental Engineering and Management Journal, 21, 1835-1845. http://doi.org/10.30638/eemj.2022.163

Tomassoni, F. (2019) Remoção de cor de efluente têxtil sintético por processos de eletrocoagulação e adsorção com carvões ativados produzidos a partir de folhas de Persea americana Mill. e de Cassia fistula L. Tese (Doutorado em Engenharia Ambiental), Programa de Pós-Graduação em Engenharia Ambiental da Universidade Federal de Santa Catarina, Florianópolis, 176 pp.

Wu, L., Li, B., Liu, M. (2018) Influence of aromatic structure and substitution of carboxyl groups of aromatic acids on their sorption to biochars, Chemosphere, 210, 239-246. https://doi.org/10.1016/j.chemosphere.2018.07.003

Zhou, D., Zhang, L., Zhou, J., Guo, S. (2004) Development of a Fixed-Bed Column with Cellulose/Chitin Beads to Remove Heavy-Metal Ions, Journal of Applied Polymer Science, 94, 684–691. https://doi.org/10.1002/app.20946