DYES REMOVAL IN TEXTILE EFFLUENT USING BIOCHAR OF Persea americana Mill. LEAVES: ISOTHERMAL STUDY AND ADSORPTION COLUMN
Main Article Content
Abstract
The textile industry generates large volumes of effluents with a high concentration of dyes. The treatment of these effluents with alternative adsorbents has been investigated. Preliminary studies have shown that the biochar produced with leaves of Persea americana Mill. was efficient in removing dyes. Thus, in a complementary way, the present work evaluated the removal efficiency of the dyes Levafix Brilliant Red and Remazol Preto B 133% in synthetic textile effluent with the new adsorbent in two stages: a) isothermal studies and b) tests in adsorption column with continuous flow. Five isothermal models were studied. The Langmuir model was the best fit for the data, with an RL of 0.001, indicating that the adsorption is favorable. In the adsorption columns, the adsorption capacity of the dyes was 8.71 mg.g-1 of adsorbent. Therefore, the study demonstrated that the alternative adsorbent could be used to efficiently remove dyes in a continuous process and with reduced costs.
Article Details
Citas en Dimensions Service
References
Adinata, D., Daud, W.M.A.W., Aroua, M.K. (2007) Preparation and characterization of activated carbon from palm shell by chemical activation with K2CO3, Bioresource Technology, 98, 145-149. https://doi.org/10.1016/j.biortech.2005.11.006
Ahmed, M. (2017) Application of raw and activated Phragmites australis as potential adsorbents for wastewater treatments, Ecological Engineering, 102, 262-269. https://doi.org/10.1016/j.ecoleng.2017.01.047
ABIT, Associação Brasileira da Indústria Têxtil e Confecção (2022) Perfil do Setor – Dados Gerais do setor referentes a 2022. São Paulo. ABIT, 2022.
Al-Tohamy, R., S.Ali, S., Li, F., Okasha, K.M., Mahmoud, Y.A.G., Elsamahy, T., Jiao, H., Fu, Y., Sun, J. (2022) A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety, Ecotoxicology and Environmental Safety, 231, 113-160. https://doi.org/10.1016/j.ecoenv.2021.113160
Bharali, R.K., Bhattacharyya, K.G. (20115) Biosorption of fluoride on Neem (Azadirachta indica) leaf powder, Journal of Environmental Chemical Engineering, 3, 662-669. https://doi.org/10.1016/j.jece.2015.02.007
Bulgariu, L., Escudero, L.B., Bello, O.S., Iqbal, M., Nisar, J., Adegoke, K.A., Alakhras, F., Kornaros, M., Anastopoulos, L. (2019) The utilization of leaf-based adsorbents for dyes removal: A review, Journal of Molecular Liquids, 276, 728-747. https://doi.org/10.1016/j.molliq.2018.12.001
Cavas, L., Karabay, Z., Alyuruk, H., Dogan, H., Demir, G. (2011) Thomas and artificial neural network models for the fixed-bed adsorption of methylene blue by a beach waste Posidonia oceanica (L.) dead leaves, Chemical Engineering Journal, 171, 557-562. https://doi.org/10.1016/j.cej.2011.04.030
Chen, J.P., Yoon, J.T., Yiacoumi, S. (2003) Effects of chemical and physical properties of influent on copper sorption onto activated carbon fixed-bed columns, Carbon, 41, 1635-1644. https://doi.org/10.1016/S0008-6223(03)00117-9
CONAMA, Conselho Nacional do Meio Ambiente (2005) Resoluções do CONAMA: Dispõe sobre a classificação dos corpos de água e diretrizes ambientais para o seu enquadramento, bem como estabelece as condições e padrões de lançamento de efluentes, e dá outras providências, n.357, de 17/08/2005, Brasília, SEMA.
Dabrowski, A. (2001) Adsorption — from theory to practice, Advances in Colloid and Interface Science, 93, 135-224. https://doi.org/10.1016/S0001-8686(00)00082-8
Divya, J.M., Palak, K., Vairavel, P. (2020) Optimization, kinetics, equilibrium isotherms, and thermodynamics studies of Coomassie violet dye adsorption using Azadirachta indica (Neem) leaf adsorbent, Desalination and Water Treatment, 190, 353-382. https://doi.org/10.5004/dwt.2020.25706
Fávere, V.T., Riella, H.G., Rosa, S. (2010) Cloreto de n-(2-hidroxil) propil-3-trimetil amônio quitosana como adsorvente de corantes reativos em solução aquosa, Química Nova, 33, 1476–1481. https://doi.org/10.1590/S0100-40422010000700010
Febrianto, J., Kosasih, A.N., Sunarso, J., Ju, Y., Indraswati, N., Ismadji, S. (2009) Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: a summary of recent studies, Journal of Hazardous Materials, 162, 616-645. https://doi.org/10.1016/j.jhazmat.2008.06.042
Foo, K., Hameed, B.H. (2010) Insights into the modeling of adsorption isotherm systems, Chemical Engineering Journal, 156, 2-10. https://doi.org/10.1016/j.cej.2009.09.013
FAO, Food and Agriculture Organization of The United Nations (2017) Faostat. Statistics database, 2017.
Garba, Z.N., Lawan, I., Zhou, W., Zhang, M., Wang, L., Yuan, Z. (2020) Microcrystalline cellulose (MCC) based materials as emerging adsorbents for the removal of dyes and heavy metals – A review, Science of The Total Environment, 717. https://doi.org/10.1016/j.scitotenv.2019.135070
Geremew, B., Zewde, D. (2022) Hagenia abyssinica leaf powder as a novel low-cost adsorbent for removal of methyl violet from aqueous solution: Optimization, isotherms, kinetics, and thermodynamic studies, Environmental Technology & Innovation, 28. https://doi.org/10.1016/j.eti.2022.102577
Govarthanan, M., Liang, Y., Kamala-Kannan, S., Kim, W. (2022) Eco-friendly and sustainable green nano-technologies for the mitigation of emerging environmental pollutants, Chemosphere, 287. https://doi.org/10.1016/j.chemosphere.2021.132234
Guirardello, R. (2006) Removal of nickel (II) ions from aqueous solution by biosorption in a fixed bed column: Experimental and theorical breakthrough curves, Biochemical Engineering Journal, 30, 184-191. https://doi.org/10.1016/j.bej.2006.04.001
Kavitha, G., Kumar, J.V., Devanesan, S., Asemi, N.N., Manikandam, V., Arulmozhi, R., Abirami, N. (2022) Ceria nanoparticles anchored on graphitic oxide sheets (CeO2-GOS) as an efficient catalyst for degradation of dyes and textile effluents, Environmental Research, 209. https://doi.org/10.1016/j.envres.2022.112750
Lan, D., Zhu, H., Zhang, J., Li, S., Chen, Q., Wang, C., Wu, T., Xu, M. (2022) Adsorptive removal of organic dyes via porous materials for wastewater treatment in recent decades: A review on species, mechanisms and perspectives, Chemosphere, 293, 133-464. https://doi.org/10.1016/j.chemosphere.2021.133464
León, V.B., Negreiros, B.A.F., Brusamarello, C.Z., Petroli, G., Domenico, M.D., Souza, F.B. (2020) Artificial neural network for prediction of color adsorption from an industrial textile effluent using modified sugarcane bagasse: Characterization, kinetics and isotherm studies, Environmental Nanotechnology, Monitoring & Management, 14, 100-387. https://doi.org/10.1016/j.enmm.2020.100387
Liu, Y., Kang, Y., Mu, B., Wang, A. (2014) Attapulgite/bentonite interactions for methylene blue adsorption characteristics from aqueous solution, Chemical Engineering Journal, 237, 403-410. https://doi.org/10.1016/j.cej.2013.10.048
Meghana, C., Juhi, B., Rampal, N., Vairavel, P. (2020) Isotherm, kinetics, process optimization and thermodynamics studies for removal of Congo red dye from aqueous solutions using Nelumbo nucifera (Lótus) leaf adsorbent, Desalination and Water Treatment, 207, 373-397. https://doi.org/10.5004/dwt.2020.26389
Mo, J., Hwang, J.E., Jegal, J., Kim, J. Pretreatment of a dyeing wastewater using chemical coagulants. Dyesand Pigments, 72, 240-245. https://doi.org/10.1016/j.dyepig.2005.08.022
Muniyandi, M., Govindaraj, P., Balji, G.B. (2021) Potential removal of Methylene Blue dye from synthetic textile effluent using activated carbon derived from Palmyra (Palm) shell, Materialstoday: Proceedings, 47, 299-311. https://doi.org/10.1016/j.matpr.2021.04.468
Nascimento, R.F., Lima, A.C.A., Vidal, C.B., Melo, D.Q., Raulino, G.S.C. (2014) Adsorção aspectos teóricos e aplicações ambientais. 1 ed. Fortaleza: Imprensa Universitária, 256p. https://doi.org/10.13140/RG.2.1.4340.1041
Priyantha, N., Romzi, A.A., Chan, C.M., Lim, L.B.L. (2021) Enhancing adsorption of crystal violet dye through simple base modification of leaf adsorbent: isotherm, kinetics, and regeneration, Desalination and Water Treatment, 215, 194-205. https://doi.org/10.5004/dwt.2021.26758
Ramos, M.D.N., Santana, C.S., Velloso, C.C.V., Silva, A.H.M., Magalhães, F., Aguiar, A. (2021) A review on the treatment of textile industry effluents through Fenton processes, Process Safety and Environmental Protection, 155, 366-386. https://doi.org/10.1016/j.psep.2021.09.029
Ross, B.Z.L., Posseti, G.R.C. (2018) Tecnologias potenciais para o saneamento: remoção de metais de águas de abastecimento público. Curitiba: Sanepar. Disponível em: https://site.sanepar.com.br/sites/site.sanepar.com.br/files/publicacoes/livro_tecnologias_potenciais_vol2.pdf
Tomassoni, F., Schneider, E.E., Giroletti, C. L., Lobo-Recio, M.A., Nagel-Hassemer, M. E., Lapolli, F. R. (2022) A new adsorbent from avocado leaves: production, characterization, and optimization of its use, Environmental Engineering and Management Journal, 21, 1835-1845. http://doi.org/10.30638/eemj.2022.163
Tomassoni, F. (2019) Remoção de cor de efluente têxtil sintético por processos de eletrocoagulação e adsorção com carvões ativados produzidos a partir de folhas de Persea americana Mill. e de Cassia fistula L. Tese (Doutorado em Engenharia Ambiental), Programa de Pós-Graduação em Engenharia Ambiental da Universidade Federal de Santa Catarina, Florianópolis, 176 pp.
Wu, L., Li, B., Liu, M. (2018) Influence of aromatic structure and substitution of carboxyl groups of aromatic acids on their sorption to biochars, Chemosphere, 210, 239-246. https://doi.org/10.1016/j.chemosphere.2018.07.003
Zhou, D., Zhang, L., Zhou, J., Guo, S. (2004) Development of a Fixed-Bed Column with Cellulose/Chitin Beads to Remove Heavy-Metal Ions, Journal of Applied Polymer Science, 94, 684–691. https://doi.org/10.1002/app.20946

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.