PRÉ-TRATAMENTO DE LIXIVIADO DE ATERRO SANITÁRIO POR ALCALINIZAÇÃO E PRECIPITAÇÃO QUÍMICA

Contenido principal del artículo

Naiara Angelo Gomes
Nayr Thays Henrique Calixto
Elisângela Maria da Silva
Libânia da Silva Ribeiro
Veruschka Escarião Dessoles Monteiro
Márcio Camargo de Melo

Resumen

Este trabalho teve como objetivo estudar a viabilidade ambiental da aplicação da cal hidratada comercial do tipo I (CH-I) e do hidróxido de sódio padrão analítico (NaOH P.A) em processos de alcalinização/ precipitação química utilizando lixiviado de aterro sanitário. Para isso, no mês de maio/2021, coletou-se aproximadamente 1 m3 de lixiviado no Aterro Sanitário em Campina Grande (ASCG), Paraíba, Brasil, em caminhão-tanque, o qual foi armazenado em um reservatório de polietileno, nas dependências físicas da Universidade Federal de Campina Grande, Campus Sede. Posteriormente, cerca de 0.001 m3 de lixiviado foram coletados, em triplicata, para a realização dos ensaios de alcalinização, que tiveram por finalidade aumentar o potencial hidrogeniônico (pH) do referido efluente para 10 ± 1 e 12 ± 1 e verificar a precipitação química do cobre (Cu), cromo (Cr) e níquel (Ni) total, bem como a remoção de cor, turbidez e nitrogênio amoniacal total (NAT), utilizando a CH-I e o NaOH P.A. Os resultados retrataram que foram necessários 28.45 g de CH-I e 5.59 g de NaOH P.A para elevar o pH do lixiviado à 10 ± 1. Em relação ao aspecto econômico, é mais vantajoso usar a CH-I no processo de alcalinização/precipitação química, pois seu custo foi cerca de 12 (pH = 10 ± 1) e 17 (pH = 12 ± 1) vezes menor em relação ao NaOH P.A. Observou-se que a CH-I apresentou o melhor desempenho na redução de cor aparente (60 a 90%) e NAT (> 8%), e teve eficiência similar ao NaOH P.A na remoção do Cr (pH = 12 ± 1), Cu e Ni, alcançando valores superiores a 30, 90 e 40%, respectivamente. Diante dos resultados expostos, concluiu-se que, tanto do ponto de vista econômico, quanto ambiental, a CH-I demonstrou ser a melhor espécie química a ser aplicada em processos de alcalinização/precipitação utilizando lixiviado de aterro sanitário de região Semiárida.

Detalles del artículo

Cómo citar
[1]
Gomes, N.A., Calixto, N.T.H., Silva, E.M. da, Ribeiro, L. da S., Monteiro, V.E.D. y Melo, M.C. de 2023. PRÉ-TRATAMENTO DE LIXIVIADO DE ATERRO SANITÁRIO POR ALCALINIZAÇÃO E PRECIPITAÇÃO QUÍMICA. Revista AIDIS de ingeniería y ciencias ambientales: Investigación, desarrollo y práctica. 16, 3 (dic. 2023), 954–970. DOI:https://doi.org/10.22201/iingen.0718378xe.2023.16.3.83582.

Citas

APHA, AWWA, WEF (2017) Standard methods for the examination of water and wastewater. 22a ed. Washington: APHA. 1496 p.

Babaei, S., Sabour, M. R., Movahed, S. M. A. (2021) Combined landfill leachate treatment methods: an overview, Environmental Science and Pollution Research, 28(42), 59594-59607. https://doi.org/10.1007/s11356-021-16358-0

Bożym, M. (2020). Assessment of phytotoxicity of leachates from landfilled waste and dust from foundry, Ecotoxicology, 29(4), 429-443. https://doi.org/10.1007/s10646-020-02197-1

Brasil. Ministério do Meio Ambiente. Conselho Nacional do Meio Ambiente (Conama) (2011) Resolução n. 430, de 13 de maio de 2011. Diário Oficial da União Acesso em: 16 de agosto 2022. Disponível em: http://www.mma.gov.br/port/conama/legiabre.cfm?codlegi=646

Brasil. Ministério do Meio Ambiente. Conselho Nacional do Meio Ambiente (Conama) (2005) Resolução n. 357, de 17 de março de 2005. Diário Oficial da União. Acesso em: 20 de julho de 2022. Disponível em: < http://www2.mma.gov.br/port/conama/legiabre.cfm?codlegi=459

Budi, S., Suliasih, B. A., Othman, M.S., Heng, L.Y., Surif, S. (2016) Toxicity identification evaluation of landfill leachate using fish, prawn and seed plant, Waste Management, 55, 231-237. https://doi.org/10.1016/j.wasman.2015.09.022

Calixto, N. T. H., Gomes, N. A., Melo, M. C., Ribeiro, L. S. (2021) Efeito da alcalinização como pré-tratamento de lixiviado de aterro sanitário no semiárido brasileiro. VI Congresso Nacional de Pesquisa e Ensino e Ciências. Anais 2021.

Colombo, A., Módenes, A. N., Trigueros, D. E., de Medeiros, B. L., Marin, P., Monte Blanco, S. P., Hinterholz, C. L. (2019) Toxicity evaluation of the landfill leachate after treatment with photo-Fenton, biological and photo-Fenton followed by biological processes, Journal of Environmental Science and Health, Part A, 54(4), 269-276. https://doi.org/10.1080/10934529.2018.1544475

Costa, A. M., Alfaia, R. G. D. S. M., Campos, J. C. (2019) Landfill leachate treatment in Brazil–An overview, Journal of environmental management, 232, 110-116. https://doi.org/10.1016/j.jenvman.2018.11.006

Dasarathy, S., Mookerjee, R. P., Rackayova, V., Rangroo Thrane, V., Vairappan, B., Ott, P., Rose, C. F. (2017), Ammonia toxicity: from head to toe?. Metabolic brain disease, 32, 529-538. https://doi.org/10.1007/s11011-016-9938-3

Ecoterra Ambiental. (2010) Projeto de implantação de um aterro sanitário para resíduos sólidos no município de Campina Grande – PB: Estudo de Impacto Ambiental/Relatório de Impacto Ambiental (EIA/RIMA).

Ferraz, F. M., Povinelli, J., Vieira, E. M. (2013) Ammonia removal from landfill leachate by air stripping and absorption, Environmental technology, 34(15), 2317-2326. https://doi.org/10.1080/09593330.2013.767283

Foul, A. A., Aziz, H. A., Isa, M. H., Hung Y. T. (2009) Primary treatment of anaerobic landfill leachate using activated carbon and limestone: batch and column studies. International Journal of Environment and Waste Management, 4(3-4), 282-298.

Frederice, V. M. (2019) Remoção e recuperação de amônia por air stripping em lixiviado de aterro sanitário. Dissertação (Mestrado em Engenharia Ambiental), Universidade Tecnológica Federal do Paraná, Londrina, 77 pp.

Ghani, Z., Yusoff, M. S., Zaman, N. Q., Zamri, M. F. M. A., Andas, J. (2017), Optimization of preparation conditions for activated carbon from banana pseudo-stem using response surface methodology on removal of color and COD from landfill leachate, Waste management, 62, 177-187. https://doi.org/10.1016/j.wasman.2017.02.026

Gomes, N. A., Silva, E. M., Nascimento, S. C., Calixto, N. T. H., Ribeiro, L. S. (2020) Composição do lixiviado armazenado em uma lagoa de evaporação natural implantada no Aterro Sanitário em Campina Grande-PB. V Congresso Nacional de Pesquisa e Ensino em Ciência. Anais... Campina Grande-PB, 2020.

Gomes, N. A. (2022) Tratamento de lixiviado de aterro sanitário utilizando torre de air stripping e adsorção em leito fixo, Tese (Doutorado em Engenharia Civil e Ambiental) – Universidade Federal de Campina Grande, Campina Grande, 205 pp.

Gomes, N. A., Silva, E. M., Silva, L. T. M. S., Costa, D. B., Paiva, W., Monteiro, V. E. D., Melo, M. C. (2022) Adsorption of pollutants in sanitary landfill leachate using granular activated carbon and bentonite clay, Desalination and Water Treatment, 248, 111-123. https://doi.org/10.5004/dwt.2022.28125

Kalčíková, G., Zagorc‐Končan, J., Zupančič, M., Gotvajn, A. Ž. (2012) Variation of landfill leachate phytotoxicity due to landfill ageing, Journal of Chemical Technology & Biotechnology, 87(9), 1349-1353. https://doi.org/10.1002/jctb.3776

Kurniawan, T. A. et al. (2006) Physico-chemical treatment techniques for wastewater laden with heavy metals, Chemical engineering journal, 118 (1-2), 83-98. https://doi.org/10.1016/j.cej.2006.01.015

Kurniawan, T. A., Chan, G. Y., Lo, W. H., Babel, S. (2021) Resource recovery toward sustainability through nutrient removal from landfill leachate, Journal of Environmental Management, 287, 112-265. https://doi.org/10.1016/j.jenvman.2021.112265

Jurczyk, Ł., Koc-Jurczyk, J., Masłoń, A. (2020) Simultaneous stripping of ammonia from leachate: Experimental insights and key microbial players, Water, 12(9), 2494. https://doi.org/10.3390/w12092494

Li, Z., Xue, Q., Liu, L., Li, J. Precipitates in landfill leachate mediated by dissolved organic matters, Journal of hazardous materials, 287, p. 278-286, 2015. https://doi.org/10.1016/j.jhazmat.2015.01.059

Luo, H., Zeng, Y., Cheng, Y., He, D., Pan, X. (2020) Recent advances in municipal landfill leachate: A review focusing on its characteristics, treatment, and toxicity assessment, Science of the Total Environment, 703, 135468. https://doi.org/10.1016/j.scitotenv.2019.135468

Masoner, J. R., Kolpin, D. W., Furlong, E. T., Cozzarelli, I. M., Gray, J. L., Schwab, E. A. (2014) Contaminants of emerging concern in fresh leachate from landfills in the conterminous United States, Environmental Science: Processes & Impacts, 16(10), 2335-2354.

Metcalf, L., Eddy, H. P. (2013) Wastewater Engineering: Treatment and Resource Recovery. 5. ed. EUA: McGraw-Hill Education. 2018 pp.

Mukherjee, S., Mukhopadhyay, S., Hashim, M. A., Gupta, B. S. (2015) Contemporary environmental issues of landfill leachate: Assessment and remedies, Critical Reviews in Environmental Science and Technology, 45(5), 472-590. https://doi.org/10.1080/10643389.2013.876524

Narayan, R. B., Zargham, B. I., Ngambia, A., Riyanto, A. R. (2019) Economic and environmental impact analysis of ammoniacal nitrogen removal from landfill leachate using sequencing batch reactor: a case study from Czech Republic, Journal of Water Supply: Research and Technology-Aqua, 68(8), 816-828. https://doi.org/10.2166/aqua.2019.084

Queiroz, L. M., Amaral, M. S., Morita, D. M., Yabroudi, S. C., Sobrinho, P. A. (2011) Aplicação de processos físico-químicos como alternativa de pré e pós-tratamento de lixiviados de aterros sanitários, Engenharia Sanitária e Ambiental, 16(4), 403- 410. https://doi.org/10.1590/S1413-41522011000400012

Renou, S., Givaudan, J.G., Pounain, S., Dirassouyan, F., Moulin, P. (2008) Landfill leachate treatment: review and opportunity, J. Hazard. Mater, 150, 468-493. https://doi.org/10.1016/j.jhazmat.2007.09.077

Ribeiro, L. D. S., Silva, A. D. S., Alves, F. D. S., Melo, M. C. D., Paiva, W. D., Monteiro, V. E. D. (2016) Monitoramento físico-químico de um biorreator com resíduos sólidos urbanos em escala piloto na cidade de Campina Grande (PB), Engenharia Sanitaria e Ambiental, 21, 01-09.

Ribeiro, V. R. A. (2019) Análise comparativa do lixiviado bruto gerado em um aterro sanitário e o acumulado em uma lagoa de tratamento por evaporação natural, Dissertação (Mestrado em Engenharia Civil e Ambiental) – Universidade Federal de Campina Grande, Campina Grande, 86 pp.

Santos, H. A. P., Castilhos Júnior, A. B., Nadaleti, W. C., Lourenço, V. A. (2020) Ammonia recovery from air stripping process applied to landfill leachate treatment, Environmental Science and Pollution Research, 27(36), 45108-45120. https://doi.org/10.1007/s11356-020-10397-9

Silva, S. A., Oliveira, R. (2001) Manual de análises físico-químicas de águas de abastecimento e residuárias, DEC/CCT/UFPG, Campina Grande-PB, 270 pp.

Silva, F. M. S. (2008) Avaliação do método de precipitação química associado ao stripping de amônia no tratamento do lixiviado do Aterro da Muribeca-PE. Dissertação (Mestrado em Engenharia Civil) – Universidade Federal de Pernambuco, Recife, 138 pp.

Silva, E. M., Gomes, N. A., Nascimento, S. C., Nóbrega, B.M. A., Melo, M.C., Monteiro, V. E. D. (2022) Ecotoxicological responses of Daphnia magna and Eisenia andrei in landfill leachate. Ecotoxicology, (31), 1-11, https://doi.org/10.1007/s10646-022-02587-7

Souto, G. D’a. B. (2009) Lixiviado de aterros sanitários brasileiros: estudo de remoção do nitrogênio amoniacal por processo de arraste com ar (stripping), Tese (Doutorado em Engenharia Hidráulica e Saneamento) – Escola de Engenharia São Carlos, Universidade de São Paulo, São Carlos, 371 pp.

Souto, G. D’A. B; Povinelli, J (2011) Tabelas de características típicas do lixiviado de aterros sanitários brasileiros: fases ácida e metanogênica. 26° Congresso Brasileiro de Engenharia Sanitária e Ambiental. Anais. 2011.

Sprovieri, J. A. S., de Souza, T. S. O., Contrera, R. C. (2020) Ammonia removal and recovery from municipal landfill leachates by heating, Journal of environmental management, 256, 109947. https://doi.org/10.1016/j.jenvman.2019.109947

Taki Filho, P. K. (2016) Remoção e recuperação de nitrogênio amoniacal de efluente gerado no processamento do couro, Dissertação (Mestrado em Engenharia Ambiental), Universidade Tecnológica Federal do Paraná, Londrina, 86 pp.

Teng, C., Zhou, K., Peng, C., Chen, W. (2021) Characterization and treatment of landfill leachate: A review. Water Research, 203, 117525. https://doi.org/10.1016/j.watres.2021.117525

Vaverková, M. D., Elbl, J., Koda, E., Adamcová, D., Bilgin, A., Lukas, V., Zloch, J. (2020) Chemical composition and hazardous effects of leachate from the active municipal solid waste landfill surrounded by farmLands. Sustainability (Switzerland), 12(11), 1-20. https://doi.org/10.3390/su12114531

van Haandel, A., Santos, S. D. (2021) Variação do pH e remoção de nitrogênio em lagoas de polimento. Revista DAE, 69(229), 52-69.

von Sperling, M. (2014) Introdução à Qualidade das Águas e ao Tratamento de Esgotos, 3 ed. Belo Horizonte: Ed. DESA/UFMG, 452 pp.

Xu, Z. Y., Zeng, G. M., Yang, Z. H., Xiao, Y., Cao, M., Sun, H. S., Chen, Y. (2010) Biological treatment of landfill leachate with the integration of partial nitrification, anaerobic ammonium oxidation and heterotrophic denitrification, Bioresource technology, 101(1), 79-86. https://doi.org/10.1016/j.biortech.2009.07.082

Yang, K., Zhu, L., Zhao, Y., Wei, Z., Chen, X., Yao, C., Zhao, R. (2019) A novel method for removing heavy metals from composting system: The combination of functional bacteria and adsorbent materials, Bioresource technology, 293, 122095. https://doi.org/10.1016/j.biortech.2019.122095