TRATAMENTO FOTOCATALÍTICO DE FÁRMACOS UTILIZANDO TIO2: UMA ANÁLISE SISTÊMICA DOS MECANISMOS DE DEGRADAÇÃO, REUSABILIDADE E VIABILIDADE DO PROCESSO EM ESCALA REAL

Contenido principal del artículo

Raqueline Caldas do Nascimento
Elisângela Maria Rodrigues Rocha
Larissa Granjeiro Lucena
Arthur Marinho Cahino

Resumen

A contaminação das águas por compostos farmacêuticos em matrizes aquáticas é um problema recorrente em nossa sociedade. Um dos tratamentos mais conhecidos e utilizados para enfrentar essa questão é a fotocatálise heterogênea, capaz de destruir e mineralizar diversos contaminantes orgânicos. Por isso, o objetivo desta pesquisa foi realizar uma investigação das produções científicas acerca da fotocatálise heterogênea aplicada ao tratamento de contaminantes fármacos.  Para tanto, utilizou-se o método da revisão sistemática em conjunto com uma análise sistêmica de um portfólio bibliográfico final (PBF) elaborado por meio do método construtivista PROKNOW-C. Dos 3.498 artigos selecionados, 33 foram escolhidos para comporem o PBF. As publicações analisadas abordavam as classes dos antibióticos, anti-hipertensivos, analgésicos e anti-inflamatórios e utilizavam o TiO2 como catalisador de referência. Observou-se que a maioria das pesquisas se concentrou no aprimoramento da fotocatálise de TiO2 por modificação com dopagem de metais e heterojunções para a formação de novos compósitos. A principal espécie reativa identificada no processo foi o radical hidroxila (•OH), ainda que sejam utilizados diferentes semicondutores, uma vez que os mecanismos de degradação se repetem durante a reação e podem ser intensificados pelas condições experimentais empregadas. A reusabilidade do catalisador em número de ciclos ocorreu no máximo até 5 vezes sem que houvesse perda de eficiência, sendo quatro a quantidade de vezes que alguns catalisadores obtiveram maior desempenho após a sua reutilização. Quanto ao uso em escala real, compreende-se que existe uma lacuna sobre as análises de desempenho dos fotocatalisadores utilizados em condições mais adversas e complexas.

Detalles del artículo

Cómo citar
[1]
Nascimento, R.C. do, Rocha, E.M.R., Lucena, L.G. y Cahino, A.M. 2023. TRATAMENTO FOTOCATALÍTICO DE FÁRMACOS UTILIZANDO TIO2: UMA ANÁLISE SISTÊMICA DOS MECANISMOS DE DEGRADAÇÃO, REUSABILIDADE E VIABILIDADE DO PROCESSO EM ESCALA REAL. Revista AIDIS de ingeniería y ciencias ambientales: Investigación, desarrollo y práctica. 16, 3 (dic. 2023), 834–857. DOI:https://doi.org/10.22201/iingen.0718378xe.2023.16.3.83517.

Citas

Ahmadi, M., Motlagh, H. R, Jaafarzadeh, N., Mostoufi, A., Saeedi. R., Barzegar, G., Jorfi, S. (2017) Enhanced photocatalytic degradation of tetracycline and real pharmaceutical wastewater using MWCNT/TiO2 nano-composite, Journal of Environmental Management, 186(1), 55-63. https://doi.org/10.1016/j.jenvman.2016.09.088

Ahmed, S, Khan, F. S. A., Mubarak, N. M., Khalid, M., Tan, Y. H., Mazari, S. A., Karri, R. R., Abdullah, E. A. (2021) Emerging pollutants and their removal using visible-light responsive photocatalysis – A comprehensive review. Journal of Environmental Chemical Engineering, 9, 1-27. https://doi.org/10.1016/j.jece.2021.106643

Barboza, L. S., Sánchez, P. S. V., Gil, S. A. A. (2019) Removal of estrone in water and wastewater by

photocatalysis: a systematic review. Revista Producción + Limpia, 14(1), 18-32. https://doi.org/10.22507/pml.v14n1a7

Belver, C., Bedia, J., Rodriguez, J.J. (2017) Zr-doped TiO2 supported on delaminated clay materials for solar photocatalytic treatment of emerging pollutants. Journal of Hazardous Materials, 322, 233–242. https://doi.org/10.1016/j.jhazmat.2016.02.028

Borges, M. E., García, D. M., Hernández, T., Ruiz-Morales, R. C. Esparza, P. (2015) Supported Photocatalyst for Removal of Emerging Contaminants from Wastewater in a Continuous Packed-Bed

Photoreactor Configuration. Catalysts, 5, 77-87. https://doi.org/10.3390/catal5010077

Cavalcante, R. P., Dantas, R. F., Wender, H., Bayarri, B., González, O., Giménez, J., Esplugas, S., Machulek, A. Jr. (2015) Photocatalytic treatment of metoprolol with B-doped TiO2: Effect of water matrix, toxicological evaluation and identification of intermediates. Applied Catalysis B: Environmental, 176(177), 173–182. http://dx.doi.org/10.1016/j.apcatb.2015.04.007

Cavalcante, R. P., Dantas, R. F., Bayarri, B., González, O., Giménez, J., Esplugas, S., Machulek, A. Jr. (2015) Synthesis and characterization of B-doped TiO2 and their performance for the degradation of metoprolol, Catalysis Today, 252, 27–34. http://dx.doi.org/10.1016/j.cattod.2014.09.030

Comninellis, C., Kapalka, A., Malato, A., Parsons, S. A., Poulios, I., Mantzavinos, D. (2008) Advanced oxidation processes for water treatment: advances and trends for R&D. Journal Chemical Technology Biotechnology, 83(6), 769-776. https://doi.org/10.1002/jctb.1873

Cizmic, M., Davor Ljubas, D., Rozman, M., Asperger, D., Curkovic, l., Sandra Babic, S. (2019) Photocatalytic Degradation of Azithromycin by Nanostructured TiO2 Film: Kinetics, Degradation Products, and Toxicity. Materials, 12(873) 1-16. https://doi.org/10.3390/ma12060873

Chang, C-T., Wang, J-J. Ouyang, T., Zhang, Q., Jing, Y-H. (2015) Photocatalytic degradation of acetaminophen in aqueous solutions by TiO2/ZSM-5 zeolite with low energy irradiation. Materials Science and Engineering B, 196, 53–60. https://doi.org/10.1016/j.mseb.2014.12.025

De la Cruz, N., Dantas, R.F., Giménez, J., Esplugas, S. (2013) Photolysis and TiO2 photocatalysis of the pharmaceutical propranolol: Solar and artificial light. Applied Catalysis B: Environmental, 130(131), 249–256. http://dx.doi.org/10.1016/j.apcatb.2012.10.003

Dimitrakopoulou, D., Rethemiotaki, I., Frontistis, Z., Xekoukoulotakis, N. P., Venieri, D., Mantzavinos, D. (2012) Degradation, mineralization and antibiotic inactivation of amoxicillin by UV-A/TiO2 photocatalysis. Journal of Environmental Management. 98, 168-174. https://doi.org/10.1016/j.jenvman.2012.01.010

Dong, D., Li, P. Li, X., Zhao, Q., Zhang, Y, Jia, C., Li, P. (2010) Investigation on the photocatalytic degradation of pyrene on soil surfaces using nanometer anatase TiO2 under UV irradiation. Journal of Hazardous Materials, 174, 859-863. https://doi.org/10.1016/j.jhazmat.2009.09.132

Ebele, A. J., Mohamed Abou-Elwafa Abdallah, M. A-E., Harrad, S. (2017) Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment. Emerging Contaminants, 3(1), 1–16. https://doi.org/10.1016/j.emcon.2016.12.004

Elmolla, E. S., Chaudhuri, M. Photocatalytic degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution using UV/TiO2 and UV/H2O2/TiO2 photocatalysis. Desalination, 252, 46–52. https://doi.org/10.1016/j.desal.2009.11.003

Ensslin, S. R., Ensslin, L. Processo estruturado de revisão da literatura e análise bibliométrica sobre avaliação de desempenho de processos de implementação de eficiência energética. Revista Brasileira de Energia. 20(1), 21–50

Eslami, A., Amini, M. M., Yazdanbakhsh, A. R., Anoushiravan Mohseni-Bandpei, A., Safari, A. A., Asadi, A. (2015) N,S co-doped TiO2 nanoparticles and nanosheets in simulated solar light for photocatalytic degradation of non-steroidal anti-inflammatory drugs in water: a comparative study. Journal Chemical Technology Biotechnology, 91(10), 2693-2704. https://doi.org/10.1002/jctb.4877

Fagan, R., Declan E. McCormack, D. E., Dionysiou, D. D., Pillai, S. C. (2016) A review of solar and visible light active TiO2 photocatalysis for treating bacteria, cyanotoxins and contaminants of emerging concern. Materials Science in Semiconductor Processing, 42, 2–14. https://doi.org/10.1016/j.mssp.2015.07.052

Farré, M. Pérez, S. Kantiani, L. Barceló, D. (2008) Fate and toxicity of emerging pollutants, their metabolites and transformation products in the aquatic environment. Trends in Analytical Chemistry, 27(11). https://doi.org/10.1016/j.trac.2008.09.010

Ghosh, M., Manoli, K., Shen, X., Wang, J., Ray, A. K. (2019) Solar photocatalytic degradation of caffeine with titanium dioxide and zinc oxide nanoparticles. Journal of Photochemistry & Photobiology A: Chemistry, 377, 1–7. https://doi.org/10.1016/j.jphotochem.2019.03.029

Han, C., Likodimos, V., Khan, J. A., Nadagouda, M. N., Andersen, J., Falaras, P., Rosales-Lombardi, P., & Dionysiou, D. D. (2014) UV–visible light-activated Ag-decorated, monodisperse TiO2 aggregates for treatment of the pharmaceutical oxytetracycline. Environmental Science and Pollution Research, 21, 11781–11793. https://doi.org/10.1007/s11356-013-2233-5

Haque, M. M., Muneer, M., Bahnemann, D. W. (2006) Semiconductor-Mediated Photocatalyzed Degradation of a Herbicide Derivative, Chlorotoluron, in Aqueous Suspensions. Environmental Science & Technology, 40, 4765–4770. https://doi.org/10.1021/es060051h

He, L., Dong, Y., Zheng, Y., Jia, Q., Shan, S., Zhang, Y. (2019) A novel magnetic MIL-101(Fe)/TiO2 composite for photo degradation of tetracycline under solar light. Journal of Hazardous Materials. 361, 85–94. https://doi.org/10.1016/j.jhazmat.2018.08.079

Hu, X., Sun, Z. Song, J., Zhang, X., Li, C., Zheng, S. (2019) Synthesis of novel ternary heterogeneous BiOCl/TiO2/sepiolite composite with enhanced visible-light-induced photocatalytic activity towards tetracycline. Journal of Colloid and Interface Science, 533, 238–250. https://doi.org/10.1016/j.jcis.2018.08.077

Jalloulia, N., Pastrana-Martínez, L. M., Ribeiro, A. R., Moreirab, N. F. F., Faria, J. L., Hentatia, O., Adrián M.T. Silva, A. M. T., Ksibi, M. (2018) Heterogeneous photocatalytic degradation of ibuprofen in ultrapure water, municipal and pharmaceutical industry wastewaters using a TiO2/UV-LED system. Chemical Engineering Journal, 334, 976–984. https://doi.org/10.1016/j.cej.2017.10.045

Jardim, W. F, Montagner, C. C., Pescara, I. C., Umbuzeiro, G. A., Bergamasco, A. M. D., Eldridge, M. L., Sodré, F. F. (2012) An integrated approach to evaluate emerging contaminants in drinking water. Separation and Purification Technology, 84, 3 – 8. https://doi.org/10.1016/j.seppur.2011.06.020

Ji, Y. Zhou, L., Ferronato, C., Yang, X. Salvador, A., Zeng, C., Chovelon, J-M. (2013) Photocatalytic degradation of atenolol in aqueous titanium dioxide suspensions: Kinetics, intermediates and degradation pathways. Journal of Photochemistry and Photobiology A: Chemistry, 254, 35–44. https://doi.org/10.1016/j.jphotochem.2013.01.003

Kaur, A., Umar, A., Kansal, S. K. (2015) Sunlight-driven photocatalytic degradation of non-steroidal anti-inflammatory drug based on TiO2 quantum dots. Journal of Colloid and Interface Science, 459, 257–263. https://doi.org/10.1016/j.jcis.2015.08.010

Kanakaraju, D., Kockler, J., Motti, C. A., Glass, B. D., Oelgemöller, M. (2015a) Titanium dioxide/zeolite integrated photocatalytic adsorbents for the degradation of amoxicillin. Applied Catalysis B: Environmental, 166(167) 45–55. http://dx.doi.org/10.1016/j.apcatb.2014.11.001

Kanakaraju, D., Kockler, J., Motti, C. A., Glass, B. D., Oelgemöller, M. (2015) TiO 2 photocatalysis of naproxen: Effect of the water matrix, anions and diclofenac on degradation rates. Chemosphere, 139, 579–588. http://dx.doi.org/10.1016/j.chemosphere.2015.07.070

Khasawneh, O. F. S., Palaniandy, P. (2021) Removal of organic pollutants from water by Fe2O3/TiO2 based

photocatalytic degradation: A review. Environmental Technology & Innovation, 21, 1-20. https://doi.org/10.1016/j.eti.2020.101230

Kim, J. K.. Kan, E. Heterogeneous photocatalytic degradation of sulfamethoxazole in water using a biochar-supported TiO2 photocatalyst. Journal of Environmental Management, 180, 94–101. https://doi.org/10.1016/j.jenvman.2016.05.016

Koltsakidou, Α., Katsiloulis, C., Εvgenidou, Ε., Lambropoulou, D. A. (2019) Photolysis and photocatalysis of the non-steroidal anti-inflammatory drug Nimesulide under simulated solar irradiation: Kinetic studies, transformation products and toxicity assessment. Science of the Total Environment, 689, 245–257. https://doi.org/10.1016/j.scitotenv.2019.06.172

Kurniawan, T. A., Yanyan, L., Ouyang, T., Albadarin, A. B., Walker, G. (2018) BaTiO3/TiO2 composite-assisted photocatalytic degradation for removal of acetaminophen from synthetic wastewater under UV–vis irradiation. Materials Science in Semiconductor Processing, 73, 42–50. https://doi.org/10.1016/j.mssp.2017.06.048

Kummerer, K. (2009) The presence of pharmaceuticals in the environment due to human use – present knowledge and future challenges. Journal of Environmental Management, 90, 2354–2366. https://doi.org/10.1016/j.jenvman.2009.01.023

Khodadadi M., Ehrampoush M. H., Ghaneian M. T., Allahresani A. Mahvi A. H. (2018) Synthesis and characterizations of FeNi3@SiO2@TiO2 nanocomposite and its application in photo- catalytic degradation of tetracycline in simulated wastewater. Journal of Molecular Liquids, 255, 224–232. https://doi.org/10.1016/j.molliq.2017.11.137

Lin, C-J., Yang, W-T. (2014) Ordered mesostructured Cu-doped TiO2 spheres as active visible-light-driven photocatalysts for degradation of paracetamol. Chemical Engineering Journal, 237, 131–137. https://doi.org/10.1016/j.cej.2013.10.027

Malato, S., Maldonado, M. I., Fernández-Ibáñez, P. Oller, Polo, I., Sánchez-Moreno, R. (2016) Decontamination and disinfection of water by solar photocatalysis: The pilot plants of the Plataforma Solar de Almeria. Materials Science in Semiconductor Processing, 42, 15-23. https://doi.org/10.1016/j.mssp.2015.07.017

Malekshoar, G., Pal, K., He, Q., Yu, A., Ray, A. R. (2014) Enhanced Solar Photocatalytic Degradation of Phenol with Coupled Graphene-Based Titanium Dioxide and Zinc Oxide. Industrial & Engineering Chemistry Research, 53, 18824–18832. https://doi.org/10.1021/ie501673v

Malesic-Eleftheriadou, N., Evgenidou, E. N., .Kyzas, G. Z., Bikiaris, D. N., Lambropoulou, D. A. (2019) Removal of antibiotics in aqueous media by using new synthesized bio-based poly(ethylene terephthalate) - TiO2 photocatalysts. Chemosphere, 234, 746-755. https://doi.org/10.1016/j.chemosphere.2019.05.239

Martínez, M., Canle, M. L. Fernández, M.I., Santaballa, J.A., Faria, J. (2011) Aqueous degradation of diclofenac by heterogeneous photocatalysis using nanostructured materials. Applied Catalysis B: Environmental, 107, 110–118. https://doi.org/10.1016/j.apcatb.2011.07.003

Michael, I., Rizzo, L., McArdell, C.S., Manaia, C.M., Merlin, C., Schwartz, T., Dagot, C., Fatta-Kassinos, D. (2013) Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: A review. Water research, 47, 957–995. https://doi.org/10.1016/j.watres.2012.11.027

Mompelat, S., Bot, B., Thomas, O. (2009) Occurrence and fate of pharmaceutical products and by-products, from resource to drinking water. Environment International, 35, 803–814. https://doi.org/10.1016/j.envint.2008.10.008

Montagner, C. C., Vidal, V., Sodré, F. F., Pescara, I. C., e Jardim, W. F. (2014) in: Canela, M.C., Jardim, W. F., Sodré, F. F., Grassi, M. T. (Ed.), Cafeína em águas de abastecimento público no Brasil. Cubo, São Carlos, São Paulo, Brasil, 11–18. https://doi.org/10.13140/2.1.3543.3289

Nogueira, R. F. P., Jardim, W. F. (1997) Fotocatálise heterogênea e sua aplicação ambiental. Química Nova, 21(1), 69-72. https://doi.org/10.1590/S0100-40421998000100011

Noguera-Oviedo, K., Aga, D. S. (2016) Lessons learned from more than two decades of research on emerging contaminants in the environment. Journal of Hazardous Materials, 316, 242–251. https://doi.org/10.1016/j.jhazmat.2016.04.058

Oros-Ruiz, S., Zanella, R., Prado, B. (2013) Photocatalytic degradation of trimethoprim by metallic nanoparticles supported on TiO2-P25. Journal of Hazardous Materials. 263, 28–35. https://doi.org/10.1016/j.jhazmat.2013.04.010

Peña-Guzmán, C., Ulloa-Sánchez, S., Mora, K., Helena-Bustos, R., Lopez-Barrera, E., Alvarez, J., Rodriguez-Pinzón, M. (2019) Emerging pollutants in the urban water cycle in Latin America: A review of the current literature. Journal of Environmental Management, 237, 408–423. https://doi.org/10.1016/j.jenvman.2019.02.100

Pereira, J. H. O. S., Vilar, V. J. P., Borges, M. T., González, O., Esplugas, S. .Boaventura, R. A. R. Photocatalytic degradation of oxytetracycline using TiO2 under natural and simulated solar radiation. Solar Energy, 85, 2732–2740. https://doi.org/10.1016/j.solener.2011.08.012

Ribeiro, A. R., Nunes, O. C., Pereira, M. F.R., Silva, A. M.T. (2015) An overview on the advanced oxidation processes applied for the treatment of water pollutants defined in the recently launched Directive 2013/39/EU. Environment International, 75, 33–51. https://doi.org/10.1016/j.envint.2014.10.027

Rizzo, L., Malato, S., Antakyali, D., Beretsou, V. G., Dolić, M. B., Gernjak, W., Heath, E. Ivancev-Tumbas, I., Karaolia, P. Ribeiro, A. R. L., Mascolo, G. McArdell, C. S., Schaar, H. Silva, A. M. S., Fatta-Kassinos, D. (2019) Consolidated vs new advanced treatment methods for the removal ofcontaminants of emerging concern from urban wastewater. Science of the Total Environment, 655, 986–1008. https://doi.org/10.1016/j.scitotenv.2018.11.265

Romero, V., De la Cruz, N. Dantas, R. F., Marco, P. Giménez, J. Esplugas, S. (2011) Photocatalytic treatment of metoprolol and propranolol. Catalysis Today. 161, 115–120. https://doi.org/10.1016/j.cattod.2010.09.026

Salimi, M., Esrafili, A., Jafari, A. J., Gholami, M., Sobhi, H. R., Nourbakhsh, M., Akbari-Adergani, B. (2019) Photocatalytic degradation of cefixime with MIL-125(Ti)-mixed linker decorated by g-C3N4 under solar driven light irradiation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 582, 123874. https://doi.org/10.1016/j.colsurfa.2019.123874

Santiago-Morales, J., Agüera, A., Gómez, M. M., Fernández-Alba, A. R., Giménez, J., Esplugas, S. Rosal, R. (2013) Transformation products and reaction kinetics in simulated solar lightphotocatalytic degradation of propranolol using Ce-doped TiO2. Applied Catalysis B: Environmental, 129, 13–29. https://doi.org/10.1016/j.apcatb.2012.09.023

Shafaei, A., Nikazar, M., Arami, M. (2010) Photocatalytic degradation of terephthalic acid using titania and zinc oxide photocatalysts: Comparative study. Desalination, 252, 8–16. https://doi.org/10.1016/j.desal.2009.11.008

Starling, M. C. V. M., Amorim, C. C., Leão, M. M. D. (2019) Occurrence, control and fate of contaminants of emerging concern in environmental compartments in Brazil. Journal of Hazardous Materials, 372, 17–36. https://doi.org/10.1016/j.jhazmat.2018.04.043

Taoufik, N., Boumya, W., Janani, F.Z., Elhalil, A., Mahjoubi, F.Z., Barka, N. (2020) Removal of emerging pharmaceutical pollutants: A systematic mappingstudy review. Journal of Environmental Chemical Engineering, 8, 104251. https://doi.org/10.1016/j.jece.2020.104251

Tijani, J. O., Fatoba, O. O., Petrik, L. F. (2013) A Review of Pharmaceuticals and endocrine-disrupting compounds: sources, effects, removal, and detections. Water Air Soil Pollut, 224(1770), 1–29. doi: 10.1007/s11270-013-1770-3. https://doi.org/10.1007/s11270-013-1770-3

Tobajas, M., Belver, C., Rodriguez, J.J. (2017) Degradation of emerging pollutants in water under solar irradiation using novel TiO2-ZnO/clay nanoarchitectures. Chemical Engineering Journal, 309, 596–606. https://doi.org/10.1016/j.cej.2016.10.002

Tran, N. H. Reinhard, M. Gin, K. Y-H. Occurrence and fate of emerging contaminants in municipal wastewater treatment plants from different geographical. Water Research. 133, 182–207. https://doi.org/10.1016/j.watres.2017.12.029

Yanyan, L., Kurniawan, T. A., Ying, Z., Albadarin, A. B., Walker, G. (2017) Enhanced photocatalytic degradation of acetaminophen from wastewater using WO3/TiO2/SiO2 composite under UV–VIS irradiation. Journal of Molecular Liquids, 243, 761–770. https://doi.org/10.1016/j.molliq.2017.08.092

Velempini, T., Prabakaran, E., Pillay, K. (2021) Recent developments in the use of metal oxides for photocatalytic degradation of pharmaceutical pollutants in waterda review. Materials Today Chemistry, 19, 1-31. https://doi.org/10.1016/j.mtchem.2020.100380

Zhao, L., Deng, J., Sun, P., Liu, J., Ji, Y., Nakada, N., Qiao, Z., Tanaka, H., Yang, Y. (2018) Nanomaterials for treating emerging contaminants in water by adsorption and photocatalysis: Systematic review and bibliometric analysis. Science of the Total Environment, 627, 1253–1263. https://doi.org/10.1016/j.scitotenv.2018.02.006

Ziylan, A., Ince, N. H. (2011) The occurrence and fate of anti-inflammatory and analgesic pharmaceuticals in sewage and fresh water: treatability by conventional and non-conventional processes. Journal of Hazardous Materials, 187, 24 – 36. https://doi.org/10.1016/j.jhazmat.2011.01.057