PRODUCTION OF GLYCOHYDROLASES FROM RESIDUES FROM THE FLOUR INDUSTRY BY Aspergillus niger

Contenido principal del artículo

Renata Silveira
Glória Marinho
Kelly Rodrigues
Barbara Chaves Aguiar Barbosa
Ida C. Pimentel
José Vladimir de Oliveira
Diogo Robl
Débora de Oliveira

Resumen

The liquid from cassava processing and the peel are agro-waste produced by the flour industry, a sector of great economic importance in Brazil. These residues can cause environmental impacts when disposed of improperly, due to their high concentration of carbohydrates and chemical demand for oxygen - COD. Faced with this demand, the objective of the present study was to carry out the bioremediation of cassava and cassava peel aiming at the production of glycohydrolases by two strains of Aspergillus niger, DR02 and AN 400. The tests took place in agitated medium, for 144 hours. The analyzes carried out were: glucose, pH, COD and the enzymes glucoamylase, xylanase and α -amylase. The results obtained showed a maximum COD reduction of 76 and 78% - DR02 and AN 400, respectively. The highest production of enzymes detected during this bioprocess, for the strains of A. niger DR02 and AN 400, were α-amylases (11.78 and 3.64 U/mL), glucoamylases (8.21 and 3.80 U/ml) and xylanases (2.66 and 1.43 U/ml), respectively. In view of the results reported here, it can be inferred that mycoremediation can be an alternative to manage waste from the flour industry, simultaneously generating value-added products that can be used in the food industry.

Detalles del artículo

Cómo citar
[1]
Silveira, R., Marinho, G. , Rodrigues, K. , Barbosa, B.C.A., Pimentel, I.C., Oliveira, J.V. de, Robl, D. y Oliveira, D. de . 2023. PRODUCTION OF GLYCOHYDROLASES FROM RESIDUES FROM THE FLOUR INDUSTRY BY Aspergillus niger. Revista AIDIS de ingeniería y ciencias ambientales: Investigación, desarrollo y práctica. 16, 3 (dic. 2023), 858–870. DOI:https://doi.org/10.22201/iingen.0718378xe.2023.16.3.83513.

Citas

Acheampong, N. A., Akanwariwiak, W. G., Mensah, M., Fei-Baffoe, B., Offei, F., Bentil, J. A., Borquaye, L. S. (2021) Optimization of hydrolases production from cassava peels by Trametes polyzona BKW001, Sci. African, 12(1), 1-13.

Adeniran, H. A., Abiose, A. S. H., Ogunsua, O. (2010) Production of fungal β-amylase and amyloglucosidase on some nigerian agricultural residues, Food Bioprocess Technology, 3, 693–698.

APHA, AWWA; WPCF. (2012) Standards Methods For Examination Of Water And Wastewater . 21th ed. Amer. Public Health Association, American Water Works Association, Water Environment Federation, Washington, D. C. USA.

Arikan, E. B., Bouchareb, E. M., Dizge, N. (2020) Investigation of fungal treatment potential for bulgur cooking process wastewater. Bioresource Technology Reports, 11, 1-7.

Cavalcanti, J. C. de M., Silva, J. C. de S., Lopes, E. A. P., Lopes, G. J. (2020) Análise da Composição Química e Metodologia de Obtenção do Melaço da Manipueira. Diversitas Journal, 5(3), 1601–1628.

Costa, R. C., Ramos, M. D. N., Fleck, L., Gomes, S. D., Aguiar, A. (2022) Critical analysis and predictive models using the physicochemical characteristics of cassava processing wastewater generated in Brazil. Journal of Water Process Engineering, 47, 102629.

Coutinho Rodrigues, O. H., Itokazu, A. G., Rörig, L., Maraschin, M., Corrêa, R. G., Pimentel-Almeida, W., Moresco, R. (2021) Evaluation of astaxanthin biosynthesis by Haematococcus pluvialis grown in culture medium added of cassava wastewater. International Biodeterioration and Biodegradation, 163, 105269.

De Carvalho, J. C., Borghetti, I. A., Cartas, L. C., Woiciechowski, A. L., Soccol, V. T., Soccol, C. R. (2018) Biorefinery integration of microalgae production into cassava processing industry : Potential and perspectives. Bioresource Technology, 247, 1165–1172.

França, I. B., Silva, C. A. A. (2021) Utilização de resíduos agroindustriais na produção de amilase por Aspergillus niger UCP 1095 através de fermentação submersa. Brazilian Journal Development, 7, 51331–51345.

Gusmão, R. de O., Assis, F. G. do V. de, Cruz, A. R. da, Solidade, L. S., Ferreira, L. F. A. A., & Leal, P. L. (2018) Filamentous fungi producing enzymes under fermentation in cassava liquid waste. Acta Scientarum Biological Sciences, 40(1).

Li, Q., Lu, H., Yin, Y., Qin, Y., Tang, A., Liu, H., Liu, Y. (2019) Synergic effect of adsorption and biodegradation enhance cyanide removal by immobilized Alcaligenes sp. strain DN25. Journal of Hazardous Material, 364, 367–375.

Li, C., Zhou, J., Du, G., Chen, J., Takahashi, S., Liu, S. (2020) Developing Aspergillus niger as a cell factory for food enzyme production. Biotechnology Advances, 44, 107630.

Magalhães, N., Cavalcante, A. V., Andrade, L. S., Wanderley, C. R. P., Marinho, G., Pessoa, K. de A. R.(2019) Citric acid production by Aspergillus niger AN 400 from agroindustry waste. Engenharia Sanitária e Ambiental, 24, 101–107.

Marinho, G., Rodrigues, K., Araujo, R., Pinheiro, Z. B., Silva, G. M. M. (2011) Glucose effect on degradation kinetics of methyl parathion by filamentous fungi species Aspergilus niger AN400. Engenharia Sanitária e Ambiental, 16, 225–230.

Melzer, G., Dalpiaz, A., Grote, A., Kucklick, M., Yvonne, G., Jonas, R., Dersch, P., Franco-lara, E., Bernd, N., Hempel, D. C. (2007) Metabolic flux analysis using stoichiometric models for Aspergillus niger : Comparison under glucoamylase-producing and non-producing conditions, Journal of Biotecnology, 132, 405–417.

Miller, G. L. (1959) Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Analytical Chemistry, 31, 426–428.

Moshi, A. P., Hosea, K. M. M., Elisante, E., Mamo, G., Önnby, L., Nges, I. A. (2016) Production of raw starch-degrading enzyme by Aspergillus sp . and its use in conversion of inedible wild cassava fl our to bioethanol. Journal of Bioscience and Bioengineering 121, 457–463.

Pastore, N. S., Hasan, S. M., Zempulski, D. A. (2011) Produção de ácido cítrico por Aspergillus niger: Avaliação de diferentes fontes de nitrogênio e de concentração de sacarose. ENGEVISTA, 13(3),1-11.

Robl, D. P., Costa P dos S., Büchli, F., Lima, D. J. da S., Delabona, P. da S., Squina, F. M., Pimentel, I. C., Padilla, G., Cruz Pradella, J. G. da. (2015) Enhancing of sugar cane bagasse hydrolysis by Annulohypoxylon stygium glycohydrolases. Bioresource Technology, 177, 247–254.

Robl, D., Delabona, P. da S., Mergel, C. M., Rojas, J. D., Costa, P. dos S., Pimentel, I.C., Vicente, V. A., Pradella, J. G. da C., Padilla, G. (2013) The capability of endophytic fungi for production of hemicellulases and related enzymes. BMC Biotechnolgy, 13(94), 1-12.

Salgado, J. M., Abrunhosa, L., Venâncio, A., Domínguez, J. M., Belo, I. (2016) Combined bioremediation and enzyme production by Aspergillus sp. in olive mill and winery wastewaters. International Biodeterioration & Biodegradation, 110, 16-23.

Santos Ribeiro, J. E. A. M., da Silva S., Martini, C., Sorce, A., Andreucci, D. J., Nóbrega de Melo, F. L., da Silva, H. (2019) Rhodotorula glutinis cultivation on cassava wastewater for carotenoids and fatty acids generation. Biocatalysis and Agricultural Biotechnology, 22, 1- 8.

Silva, T. M., Alarcon, R. F., Damasio, A. R. D. L., Michelin, M., Maller, A., Masui, D.C., Terenzi, H.F., Jorge, J. A., Polizeli, M. D. L. T. M. (2009) Use of cassava peel as carbon source for production of amylolytic enzymes by Aspergillus niveus. International Journal Food Engineering, 5(5).

Troiano, D., Orsat, V., Dumont, M. J.(2020) Status of filamentous fungi in integrated biorefineries. Renewable and Sustainable Energy Reviews, 117.

Ubalua, A. O. Cassava wastes: treatment options and value addition alternatives. (2007) African Journal Biotechnolgy, 6, 2065–2073.

Xiao, Z., Storms, R., Tsang, A. (2006) A quantitative starch-iodine method for measuring alpha-amylase and glucoamylase activities. Analytical Chemistry, 51, 146–148.