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Abstract 
Medicines have been recently recognized as one of the emerging contaminants in the environment. These are 
discharged after therapeutic use through human excretion or irregular discharges. Effluent containing high 
concentrations of drugs discharged from production facilities is also a cause of concern to nearby aquatic bodies. 
There is an increased interest in their removal due to environmental and public health problems related. Some drugs 
are resistant to conventional methods of liquid effluent treatment, and there is a risk of negative impacts in humans 
and animals if exposed repeatedly to the same medicines for prolonged periods. To date, the potential human, animal, 
and ecological risks associated with the discharge of these compounds to the environment and the potential 
techniques for liquid effluent degradation demand to be well discussed. Fenton degradation process represents one 
possibility of pharmaceutical removal of liquid effluents, as presented by the scientific literature. Therefore, this study 
presents a brief summary on Fenton degradation studies of ten of the most used drugs in city of Belo Horizonte, the 
capital of the state of Minas Gerais, Brazil. The result of the literature search about the studies of oxidative 
degradation of the drugs resulted in 45 articles found, applied to 6 drugs among the 10 most frequently used in Belo 
Horizonte. The needs regarding removal, disposal, and treatment of drugs represent an important challenge in 
environmental management. 
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Introduction 
The use and disposal of chemicals used in medicine, industry, agriculture, and residences has led 
to the spread of organic pollutants in the environment (Rehrl et al. 2020; Sousa et al. 2018; 
Bernhardt et al. 2017). Among the pollutants, pharmaceuticals have become a focus on 
environmental research, because they are a diverse class of biologically active molecules with 
application to humans and veterinary. Their effects may have an impact on other species unduly 
exposed to them.  
 
The great use of drugs by the population and in the health-care sector generates excretion of mixtures 
of substances in unchanged form and their metabolites. When they reach the environment, they can 
trigger direct harmful effects as the possibility of bioaccumulation in the different trophic levels 
exposed (Golovko et al. 2020; López-Pacheco et al. 2019; Minguez et al. 2016). The complexity of 
these compounds hinders the adoption of specific regulations in relation to drugs and metabolites in 
environmental compartments, with emphasis on the aquatic environment. 
 
Conventional wastewater treatments have shown limited efficiency in removing or degrading these 
pollutants leading to contamination of surface water and, eventually, groundwater (Bottero-Coy et 
al. 2018; Biel-Maeso et al. 2018; Azima et al. 2019; Tete et al. 2020; Golovko et al. 2020). The most 
consumed drug classes in the world are antibiotics, analgesics, anti-inflammatories, lipid regulators, 
antidepressants, chemotherapeutic agents, and hormones stand out. The concentration of drugs 
found in aquatic environments can vary from ng.L-1 to µg.L-1 and is directly related to the 
population's drug consumption pattern. The persistence and concentration of drugs after 
treatment mainly depends on the wastewater treatment plant (WTP) removal rate, seasonality of 
the weather and socioeconomic conditions, which is associated with access to drugs (Sjerps et al. 
2017; Azzouz and Ballesteros 2013; Melo et al. 2009). In Brazil, sewage treatment is still partial and 
analysis of the presence of drugs in effluents are not routinely implemented. 
 
Conventional sewage treatments by biological and physical-chemical processes are the most used 
in Brazil. These processes have as advantages the high rates of organic matter removal and 
relative low costs (Melo et al. 2009; Queiroz et al. 2012; Brant et al. 2013). The drugs, focused in 
this study, have recalcitrant characteristics, and their removal rates are directly related to the 
structural characteristics and physicochemical properties of the molecule, as well as 
biodegradability, photo-stability, and lipophilicity (Picó and Barceló 2015; Minguez et al. 2016). 
 
There are several studies indicating the detection of pharmaceutical residues in wastewater and 
water bodies in different Brazilian locations (Américo et al. 2017; Américo-Pinheiro et al. 2017; 
Becker et al. 2020; Beretta et al. 2014; Boger et al. 2021, Caldas et al. 2019, Campanha et al. 2015, 
Chaves et al. 2020, Da Silva et al. 2020; de Sousa et al. 2014; Ferreira et al. 2014; Gonçalves et al. 
2017; Lopes et al. 2016, Machado et al. 2020, Machado et al. 2016; Montagner and Jardim 2011, 
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Monteiro et al. 2016). These studies showed that drug residues and their metabolites have been 
found in Brazilian water bodies as well as in drinking water, which may be associated with the 
limitations of sanitary conditions and the inefficiency of conventional WTP to eliminate these 
substances. 
 
Drug residues were found in Minas Gerais, a Brazilian state (Figure 1), in the waters of the Doce 
River (Alvim et al. 2020; Foureaux et al. 2019), the Velhas River (Moreira et al. 2011), the 
Paraopeba River basin (Barros et al. 2018), drinking water supply reservoirs (Reis et al. 2019), and 
wastewater from WTPs (Brant et al. 2013; Moreira et al. 2011). 
 
The presence of pharmaceuticals in water bodies that receive effluents from WTPs emphasizes 
the need for studies, in addition to conventional effluent treatments in order to increase the 
protection of the aquatic ecosystem, minimizing potential damage caused by organic pollutants 
(Campanha et al. 2015; Veras et al. 2019; Beretta et al. 2014; Moreira et al. 2011; Barros et al. 
2018; Caldas et al. 2013; Ferreira 2013, Froehner et al. 2011; Monteiro et al. 2016; Pivetta and 
Gastaldini 2019). 
 
 

 

Figure 1. Brazilian map showing Minas Gerais state and Belo Horizonte city, in detail. 
 
 



  
 

538 

http://dx.doi.org/10.22201/iingen.0718378xe.17.3.86162 
Vol. 17, No.3, 535-564  

Diciembre 2024 

When discussing the environmental presence of pharmaceuticals, international organizations 
presented have introduced legislation and guidelines to ensure that drug levels in water bodies remain 
within acceptable limits. In Europe, for instance, the European Commission (EC) has implemented a 
method known as environmental risk assessment. This method is designed to comprehend potential 
impact of new drugs on the environment before commencing pharmaceutical production (Commission, 
2020). It is a crucial strategy to incorporate information about the ecotoxicity of medicines in the 
environment and stablish reduction goals for these substances (Khasawneh and Palaniandy, 2021). In 
Brazil, specific legislation regarding pharmaceutical compounds in wastewater is current lacking. 
However, some states are introducing an for an ecotoxicology parameter assessment before 
discharging into water body (Starling et al 2019). This can be considered an indirect strategy to monitor 
drugs and other recalcitrant substances in the environment. 
 
Advanced oxidation processes (AOPs) have been used for degradation of various pollutants and 
the reduction of the total organic load (Seibert et al. 2020, Mackuľak et al. 2015, Napoleão et al. 
2015). AOPs are defined as processes based on the formation of hydroxyl radical, highly oxidizing 
with high chemical reactivity. The interaction of hydroxyl radical (HO.) with organic matter 
promotes a chain reaction leading to degradation of a wide range of substances (Melo et al, 2009). 
 
Variations were introduced in the Fenton process, seeking to increase its efficiency. Ultraviolet 
(UV) radiation can be used to initiate the generation of hydroxyl radical, being called photo-
Fenton. To degrade oxytetracycline Barbosa and Machion (2014) applied the method, which 
resulted in 82% removal of this antibiotic. By the same process Velasquez et al (2014) degraded, 
in 8 min, 90% sulfathiazole, and Monteiro et al (2018) managed to reduce nimesulide by 89.7% 
and 93.4% of ibuprofen using photo-Fenton. In the study with liquid effluents the degradation of 
the drugs was between 71.9% and 100% (Napoleon et al, 2018). 
 
According to Giannakis et al. (2017) the application of AOP's to effluents leads to a gain in the 
final quality of the removal processes. The authors report that the application of Fenton and 
Photo-Fenton to raw effluents results in high removal of bacteria, with suppression of their 
growth, inactivation of viruses and yeasts. In addition, it promotes the breakdown of molecules 
of various contaminants, some of which are refractory to the biological process. 
 
The use of Fenton's reagent allows the removal of recalcitrant compounds in water and effluents, and 
in soils. It is formed by hydrogen peroxide and iron(II) ions or others transition metals, and its catalytic 
and oxidative action generates highly reactive and non-selective hydroxyl radicals (Equation 1): 
 

Fe2+ + H2O2 → Fe3+ + •OH + •HO2 Equation 1 
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The ferrous ion (Fe2+) initiates and catalyzes the decomposition of H2O2, which leads to the 
formation of hydroxyl radicals (•OH). These radicals can oxidize organic compounds by abstraction 
of protons, forming organic radicals (R•) (Equation 2): 
 

RH + •OH → H2O + R• Equation 2 
 
The Fenton reaction offers several advantages, notably the swift and non-selective destruction or 
degradation of contaminants. It is well-suited for the treatment of biological effluents, including 
those derived from both aerobic and anaerobic processes. On the other hand, the Fenton reaction 
comes with certain drawbacks. The associated costs and the safety considerations in handling 
hydrogen peroxide are noteworthy challenges. Additionally, the neutralization of effluents results 
in the formation of ferric sludge, necessitating careful planning for its final disposal. This aspect 
underscores the importance of addressing both economic and environmental considerations when 
contemplating the application of the Fenton reaction in wastewater treatment strategies. 
Therefore, this work aims to carry out a literature review about the application of Fenton's 
method and its variations for the removal of ten widely consumed drugs in a large Brazilian city. 
 
 
Metodology 
The literature review was performed using the Google Scholar online database, Web of Science, 
Pubmed, and SciFinder platforms. The following keywords were used for the search: omeprazole, 
hydrochlorothiazide, captopril, acetylsalicylic acid, aspirin, losartan, furosemide, simvastatin, 
atenolol, enalapril and ibuprofen. All keywords were searched using the algorithm “drug name” AND 
(“Fenton Process” OR “Fenton Reagent”). The subject descriptors used to search for articles included: 
hydroxyl radicals, elimination in water matrices, degradation of emerging contaminants, combined in 
different ways with the keywords. The review was expanded by searching the bibliographic 
references of relevant studies and requesting studies not available to the authors.  
 
The articles surveyed covered the period from 2008 to 2019. Specifically for the drug ibuprofen, 
the searches were directed to the years 2018 and 2019, since in the evaluated period a total of 
1910 articles were published involving this drug. References cited in the articles selected in this 
review were also included, when relevant to the topic. 
 
 
Results and discussion 
Most consumed drugs in Belo Horizonte/Brazil 
The impact of pollutants on the aquatic ecosystem is related to the intrinsic toxicity of these 
contaminants, and their physical-chemical properties. These properties determine stability, 
persistence, and bioavailability for aquatic organisms. Thus, liposoluble substances tend to 
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accumulate more in sediments, while those that are more soluble in water tend to remain in the 
liquid phase as well as be leached, more easily, from slurry or sediments. Table 1 shows some 
properties of the most consumed drugs in Belo Horizonte. 
 
The number of drugs listed in Table 1 refers to the distribution by the Unified Health System (SUS), 
which is the Brazilian public health system and serves more than 190 million people (MS, 2022). These 
drugs are also distributed by other government programs (Popular Pharmacy Program of Brazil, 2022) 
and can also be purchased directly from pharmacies. As used for the treatment of diseases of high 
prevalence in the population, this number of units consumed is certainly undersized. Among the most 
consumed drugs in Belo Horizonte, three are among the main generic drugs of continuous use in Brazil 
in 2018, according to ANVISA: captopril, atenolol, and losartan. 
 
The toxicity classification for chemicals utilizes EC50 values: < 1 mg. L-1, 1 a 10 mg. L-1; 10 a 100 mg. L-1; 
and > 100 mg. L-1 to define as very toxic, toxic, harmful and non-harmful to aquatic organisms. In a 
study by Jacob et al. (2020), omeprazole exhibited a very toxic classification, while simvastatin was 
deemed harmful. Atenolol underwent testing with D. magna (EC50 – 48H), P. subcapitata (EC50 – 72H), 
and A. salina (EC50 – 48H) and exhibited no toxicity, as reported by Minguez et al. (2016). 
 
 
Table 1. Most consumed drugs in Belo Horizonte (reference year 2016) 

Druga 
Quantity 

(106 units) 
Formula Therapeutic classb 

Solubility in water 
at 25 °C (mg.L-1)c 

Omeprazole 555 C17H19N3O3S anti-ulcer 82.3 

Hydrochlorothiazide 492 C7H8ClN3O4S2 diuretic, antihypertensive 722 

Captopril 383 C9H15NO3S antihypertensive 1.9 105 

Acetylsalicylic acid 294 C9H8O4 analgesic 3.33 

Losartan 222 C22H23ClN6O antihypertensive 8.22 

Furosemide 218 C12H10ClN2O5S diuretic 73.1 

Simvastatin 208 C25H38O5 antilipemic 7.17 10-8 

Atenolol 192 C14H22N2O3 antihypertensive 1.9 104 

Enalapril maleate 168 C20H28N2O5 antihypertensive 1.64 108 

Ibuprofen 163 C13H18O2 
non-steroidal                    
anti-inflammatory 

21 

(a)All drugs in tablet form; (b)Classification according to National Health Surveillance Agency electronic data 
sheet; (c)After being metabolized in the human body, the metabolite may present different solubilization.  
Source: Belo Horizonte Municipal Health Department, 2016 
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The acute toxicity assay involving atenolol and three metabolites, conducted with three different 
organisms, demonstrated no toxic effect in the presence of atenolol and TP267 (atenolol acid). 
However, metabolites TP167 (1-amino-3-phenoxy-2-propanol) and TP117 (1-isopropylamino-2-
propanol) caused harmful toxicity in daphnia and green algae, as demonstrated by Yi (2020). 
Toxicity tests for ibuprofen indicated toxicity to V. fischeri with EC50 of 14.97 mg.L-1 and D. magna 
with an EC50 of 50.07 mg.L-1, as reported by Grabarczyk et al. (2020). 
 
Literature review results 
The result of the literature search about the studies of oxidative degradation of the drugs 
presented in Table 1 resulted in 45 articles found, as shown in Figure 2. 
 
 

 
Figure 2. Flowchart of the article inclusion process. 
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(n = 3838) 

Featured items 
(n = 44) 
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Captopril 
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AAS 
(n = 3)  

losartan  
(n = 2) 

furosemide  
(n = 6) 

simvastatin  
(n = 0) 

Atenolol 
(n = 9) 

Enalapril 
(n = 0) 

Ibuprofen  
(n = 20) 

Excluded studies (n = 3793): 
Did not perform the Fenton process; 
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Among the drugs selected in this study, atenolol (ATE) is an antihypertensive of the β-blocker 
class that has been detected in both WWTPs and rivers, often at higher concentrations than other 
antihypertensive drugs. ATE has low bioavailability in the human body, and 50% of the 
administered dose is not absorbed, being excreted unchanged. In the environment ATE has 
mobility and bioavailability (Maszkowska et al. 2014, Alder et al., 2010). In a study conducted by 
Roberts et al. (2016) the presence of ATE was observed at different stages of the largest sewage 
treatment system in Australia and in receiving bodies of this WWTP, reaching a concentration of 
300 μg.L-1. ATE contamination was also reported in river waters in Switzerland (83 μg.L-1) and in 
its effluents (2290 μg.L-1) (Alder et al., 2010). In Brazil, in a study conducted by Sousa et al (2014) 
in the Piraí and Jundiaí rivers (São Paulo state), ATE was detected in 43% and 100% of the samples 
collected, respectively (Sousa, et al., 2014). 
 
To improve absorption some drugs are administered as a prodrug, that is a biologically inactive 
com-pound which can be converted into the active substance in the gastrointestinal or 
intracellular tract. In these cases, these are in the environment in the active form, post 
metabolization. This is the case of omeprazole, which is administered as a prodrug, being 
converted into the active metabolite in the acidic pH of the stomach. In this way it is eliminated 
in the environment as an active metabolite, and not in the full form in which it is administered 
(Hernando et al., 2007). Omeprazole is rarely found in sanitary effluents, while its metabolites 
have been identified both in urine and in sanitary effluents and surface waters. Boix et al. (2016) 
analyzed 30 samples of effluents from WWTP in 10 Italian cities, identifying 6 metab-olites of 
omeprazole, four of them present in more than 70% in the samples. 
 
The determination of losartan (LOS) in effluents has few studies in relation to water environments. In 
one study, conducted in the USA, the concentrations of LOS found were 200 μg.L-1 in summer, and 
430 μg.L-1 in winter (Xing et al. 2018). Azima et al. (2019) observed that LOS and its carboxylate 
derivative showed refractory characteristics to the biological treatment of WWTPs, remaining in 
effluents and reaching surface waters. In Japan, hospital effluents, WWTP effluents and river waters 
downstream of the release were analyzed, and the maximum values found from LOS were 786, 171 
and 32 μg.L-1, respectively; and the carboxylic metabolite were 686, 147 and 18 μg.L-1, respectively 
(Azima et al., 2019). 
 
Despite having a high medical prescription in Spain, simvastatin (SVT) excretion occurs by 
metabolites, and thus SVT was not found in the monitoring of the influents and effluents of the 
WWTP Castellon de la Plana, in Spain (Gracia-Lor et al., 2012). Its Kow value of 4.68 shows the 
tendency of its adsorption in suspended solids, as well as in sediments (Grung et al., 2007). Tete's 
(2020) research found SVT in the influents (11.7 μg.L-1) and effluents (2.65 μg.L-1) of Daspoort 
WWTP, which uses physical-chemical and biological treatment (Pretoria, South Africa), as well as in 
the waters of the Apies River (1.59 μg.L-1) downstream of WWTP (Tete et al., 2020). In Sweden SVT 
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was quantified in samples of 15 influents, effluents, slurries of WWTPs, and in bodies of water, 
downstream and upstream of DWTPs. (Drinking water treatment plant) The results show a constant 
presence of SVT in WWTPs, with medians of 84 ηg.L-1 in the influents and 130 ηg.L-1 in effluents, 
and 320 ηg.g-1  in dry sludge. These values found from the slurries can be due to the high value of 
the SVT logKow. In the bodies of water sample were found 38.5 ηg.L-1 upstream and 34 ηg.L-1 
downstream (Golovko et al, 2021). 
 
The study by Marsik et al. (2017) indicated the presence of ibuprofen (IBU) in waters produced 
by 6 DWTPs in Japan. Its excretion was around 15%, with the other fractions such as the 
metabolites hydroxi-ibuprofen (1-OH IBU and 2-OH IBU) and carboxy-ibuprofen (CBX IBU) 
(Simazaki et al., 2015). This drug and its metabolites were quantified in effluents of WWTPs and 
in the waters of the river that receives these effluents in Spain: IBU – 1900 and 750 μg.L-1, 1-OH 
IBU - 920 and 450 μg.L-1, 2-OH IBU - 3150 and 3000 μg.L-1 and CBX IBU - 5370 and 3950 g.L-1, 
respectively (Ternes et al., 2004; Ferrando-Climent et al., 2012). In Portugal, Paiga et al. (2016) 
evaluated 5 points along the Lis River. IBU and its metabolites (HIBU and CBX IBU) were identified 
in all samples collected, both from the river and from the effluents of the WWTPs. 
 
The presence of salicylic acetyl acid (AAS) and its main salicylic acid metabolite (AASt) was 
monitored by Paiga et al. (2016), along the Lis River in Portugal. Only the metabolite was found, 
present in all the aliquots analyzed. In the effluents of the WWTPs, the values of AASt varied 
between 106 and 296 μg.L-1, and in the river waters this variation was from 25 to 294 μg.L-1. 
 
The prodrug enalapril (ENA) transforms into enalaprilat in the body, being thus eliminated, 
through the renal system (Stankiewicz et al. 2015, López-Serna, 2012). This drug and its 
metabolite have been reported both in effluents (Gurke et al, 2015), as well as in surface waters 
(López-Serna et al, 2013) and groundwater (López-Serna et al, 2012). In the monitoring of the 
WWTP in Dresden, Germany, there was 60% removal of the ENA (Gurke et al, 2015). In the Ebro 
River and its tributaries, both ENA and its metabolite ENAprilato were found, with frequency and 
average values of 100% and 87%, and 7.23 ηg.L-1 and 6.23 ηg.L-1 (López-Serna et al., 2013). In 
three groundwaters, in the Barcelona area, with distinct geological characteristics and recharge 
sources, ENA and its metabolite were identified. The concentration range varied, with enalapril 
mean values significantly lower (0.02 ηg.L-1 to 0.18 ηg.L-1 in three aquifers), and then those found 
for ENAprilate: 2.42 ηg.L-1 to 4.78 ηg.L-1 in the three aquifers (López-Serna et al, 2012). Its 
detection may indicate that the focus should be on the metabolite and its degradation products 
to better evaluate their impacts on the various aquatic ecosystems. 
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Removal of the most prescribed drugs in the studied municipality by Fenton reaction and its 
derived techniques 
The information found in the articles included in this paper is consolidated in Table 2, seeking to 
show the efficiency of the Fenton and Photo-Fenton process as an alternative or complement to 
conventional sewage treatment processes for drug removal. The removal rates (Table 2) found 
were high, with values above 90%, while the reductions of TOC (total oxygen organic) showed a 
high variability. These data indicate the heterogeneity of the degradation of drug molecules. 
 
For the drugs Omeprazole, Captopril, Enalapril and simvastatin, no studies were found on the 
application of Fenton reaction for its degradation until the final date of the search. 
 
The execution of the Fenton process and its variations depend on the control of some variables to 
obtain the best efficiency. These variables are in all types of Fenton, such as pH, iron, and hydrogen 
peroxide concentrations. However, the electric current, cathode and anode cells, and radiation are 
found in specific types of Fenton, such as in electro-Fenton for the first two and photo-Fenton for 
the latter. The analysis of the articles (Table 2) made it possible to extract and group them through 
similarities in the procedures. This allowed establishing 6 topics, relating to the efficiency obtained 
by each researcher and the drug studied. The topics were: use of the TOC parameter to evaluate 
efficiency, matrix change, hydraulic retention time versus operational optimization, electrode uses 
and application of electric current, association of distinct types of processes. 
 
 
Table 2. Information about the Fenton process for studied drugs (continues) 

Drug Reference Process Used Matrix Operational 
conditions 

Removal (%), time 
(min) 

Hydrochlorothiazi
de (HTZ) 

Klamerth et al. 
(2012) 

Photo-Fenton 
Solar EDDS pH 

neutral 

Real effluent, after 
secondary biological 
treatment, with 
carbonate removal 

[HTZ] 3783 ηg.L-1, pHi = 3, 
[H2O2] 50 mg.L-1, kept 
constant during test, 

[Fe] 5 mg.L-1 

 

[HTZ] = 131 ηg.L-1 
96% removal in 60 

min 

Arzate et al. (2017) Photo-Fenton 
solar 

Real effluent, batch, 
and continuous 
photo-Fenton 

treatment. 

[HTZ] 4718 ηg.L-1,  
pHi = 5.8, pHend = 6.3, 
increase in hydraulic 

retention time = higher 
consumption of H2O2 

 

[HTZ]20min = 93% 
[HTZ]40min = 96% 
[HTZ]80min = 98% 

Paiva et al. (2018) Photo-Fenton Distilled water Catalyst: [Fe2+/Fe3+/FeOx] 
18 µmol.L-1,                  

[H2O2] 2.0 mg.L-1, pH 2.6, 
time 25 min 

 

90% removal in 30 
min 
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Table 2. Information about the Fenton process for studied drugs (continues) 

Drug Reference Process Used Matrix Operational 
conditions 

Removal (%), time 
(min) 

Paiva et al. (2018) Photo-Fenton 
 
 
 
 
 
 

Aqueous solution Condition after optimizing 
process, FeOx ferrioxalate 

1.0 mg.L-1, [H2O2] 2.0 mg.L-1, 
pH = 5 

 
 

Toxicity reduction 
after 60 min, with 

test organism 
Vibrio fischeri, 

[HTZ] 90%,  
pH = 6.0, no 
adjustments 

before disposal 
 

Acetylsalicylic 
acid (ASA) 

Ma et al. (2016) Electro-Fenton Aqueous solution pH 3, [Fe] 0.3 mM, flow 
rate 3.5 mL/min, [H2O2] 

electro generation,  
[ASA] 50 mg.L-1 

Graphite Felt, 
65% removal, N.I. 

time . 

Yang et al. (2018) Electro-Fenton Aqueous solution pH = 3 
[Fe] 

[H2O2]= electro generation 
Reaction time:10 min 

TOC = 62% 
AAS = 100% 

Napoleão et al. 
(2018) 

Photo-Fenton UV Pharmaceutical 
industry effluent 

[ASA] 0.65 mg.L-1 
150 min reaction 

[H2O2]=  fractional addition 
of 2 ml every 30 min up to 

120 min 

ASA = 71 % 
TOCtotal = 67% 

Time N.I. 

Martínez-Pachón et 
al. (2019) 

Photo-Electro-
Fenton 

Aqueous solution pH = 3 
[LOS] 4.7 x 10-5 mol.L-1 

[H2O2]= electro generation 

100% in 90 min of 
reaction 

Losartan 
potassium 

Martínez-Pachón et 
al. (2019) 

Photo-Electro-
Fenton with 
organic acids 

Composite sample 
(24h), WTP effluent 

 

Fe (III)- oxalate: presence 
of Fe+2/Fe+3:  Higher 
production of OH 

[H2O2]= electro generation 

pH ~neutral: 60% 
in 60 min 

 
Fe(III)oxalate 

70% removal 90 min 

Sono-Fenton Ultrasound as a reactor: 
Frequency: 357 kHz 

UVA lamp 
90min 

pH = 7.8 
[LOS] = 2.19 µg.L-1 

84,9% 
Time N.I. 

Serna-Galvis et al. 
(2019) 

Sono-Photo-
Fenton 

Composite sample 
(24h), WTP effluent 

Ultrasound as a reactor: 
Frequency: 357 kHz 

UVA lamp 
90min 

pH = 7.8 
[LOS] = 2.19 µg.L-1 

78.5% 
Time N.I. 

Sono-Photo-
Fenton  in the 

presence of oxalic 
acid 

74.9% 
Time N.I. 

Furosemide (FUR) Klamerth et al. 
(2012) 

Photo-Fenton actual effluent [FUR] 1100 ηg.L-1 
pHinitial = 2.8 

[H2O2] 50 mg.L-1  kept 
constant during  
test[Fe] 5 mg.L-1 

100% in 60 min of 
reaction 

Olvera-Vargas et al. 
(2015) 

Electro-Fenton 
with BDD e Pt 

Aqueous solution [H2O2]= electrogeneration 
[Fe2+] = 0.1 mM 

TOC Removal 95% 
in 8 h 

Olvera-Vargas et al. 
(2016) 

Electro-Fenton 
with BDD / carbon 

fiber electrode 

Aqueous solution pH = 3 
 [H2O2]= electrogeneration 

[Fe2+] = 0.1 mM 

TOC removal: 
1 h: 60% 
2 h: 80% 
8 h: 90% 
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Table 2. Information about the Fenton process for studied drugs (continues) 

Drug Reference Process Used Matrix Operational 
conditions 

Removal (%), time 
(min) 

Cuervo Lumbarque 
et al. (2018) 

Fenton Aqueous solution 
[DOC] 15 mg.L-1 

[FUR] 500 µg.L-1 
pH = 5 

[Fe] 12.5 mg.L-1 
[H2O2]= 533 mg.L-1 

97% after 1 min 
[DOC] 40% in 120 

min: 

simulated effluent, 
[DOC] 60 mg.L-1 

[FUR] 500 µg.L-1 
pH = 5 

[Fe] 12.5 mg.L-1 

97% after 1 min 
[DOC] 15% in 120 

min 

Actual hospital 
effluent, [DOC] 73 

mg.L-1 

[FUR] 500 µg.L-1 
pH = 5 

[Fe] 12.5 mg.L-1 

90% in 1 min 
98.9% after 120 

min 
[DOC] 15% in 120 

min 

Cuervo Lumbarque 
et al. (2019b) 

Solar 
Homo/Heterogen

eous Photo-
Fenton 

Catalyst: Fe+ Alg: 
sodium alginate 

sfere + Fe 
immobilized [3g] 

Aqueous solution, 
simulated effluent, 

real hospital 
effluent 

[FUR] 500 µg.L-1 
pH = 5 

[Fe] continuous release of 
spheres, by reaction 

demand 
[H2O2]= 25 mg.L-1 

Removal 99% 
N.I. time 

Atenolol (ATE) Isarain-Chávez et al. 
(2011) 

Electro-Fenton e 
Electro-Fenton 

Solar 

Aqueous solution [ATE]100 mg.L-1 
pH = 3 

[H2O2]= electro generation 
[Fe2+] = 0.5 mM 

T = 35ºC 

88% in COD (4 h), 
combined Pt 
electrode/air 
diffusion 
electrode 

94% in COD (4 h), 
single Pt/boron-
doped diamond 
electrode 

Li et al. (2012) Fenton Secondary effluent 
from WWTP 

pH = 3 
[H2O2] = 2.5 [Fe] 

[Fe] 20 mg.L-1 
[ATE]spiked = 1µg.L-1 

100% in 30 min 

Li et al. (2013) Fenton and 
Fenton-Like 

Secondary effluent 
from WWTP 

pH = 3 
[H2O2] = 2.5 [Fe] 

[Fe] 20 mg.L-1 
[ATE]spiked = 1µg.L-1 

[Fe] > 1.25 mg.L-1 
75% after 30 min 

Fenton Like 
[Fe] > 5 mg.L-1 

80% after 120 min 

Klamerth et al. 
(2013) 

Photo-Fenton 
Solar EDDS pH 

neutral 

Real effluent, after 
secondary biological 

treatment, with 
carbonate removal 

[ATE] 1126 ηg.L-1 
initial pH = 2.8 

[H2O2]50 mg.L-1 kept 
constant during test 

[Fe] 5 mg.L-1 

[ATE] = 35 ηg.L-1 
97% in 60 min 

 

Pietro-Rodríguez et 
al. (2013) 

Solar Photo 
Fenton 

Real pH = 2.0 
[Fe] 5 mg.L-1 

84% in 20 min 

Neamtu et al. 
(2014) 

Photo-Fenton 
with simulated 
solar irradiation 

Aqueous solution [ATE] = 2 µM 
[H2O2]= 300 µM 

[Fe] = 30 µM 

80% TOC in 30 min 
10 min: 38% 
30 me: 72% 
60 min: 98% 

Neamtu et al. 
(2014) 

Photo-Fenton 
with simulated 
solar irradiation 
Photo-Fenton 

Lake Geneva [ATE] = 2 µM 
[H2O2]= 300 µM 

[Fe] = 30 µM 
TOC=2.98mg.L-1 

60% in OCD 
60 min. 
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Table 2. Information about the Fenton process for studied drugs (continues) 

Drug Reference Process Used Matrix Operational 
conditions 

Removal (%), time 
(min) 

WWTP effluent [ATE] = 2 µM 
[H2O2]= 300 µM 

[Fe] = 30 µM 
TOC=9.31mg.L-1 

35% in OCD 
60 min.. 

Aqueous solution [ATE] 20 mg.L-1 
[Fe] = 20 mg.L-1 

[H2O2]= 100 mg.L-1 

70% IN TOC 
60 min 

Veloutsou, Bizani & 
Fytianos (2014) 

Photo-Fenton 
 

Aksios river water [DOC]2.4 mg.L-1 
[ATE] 20 mg.L-1 
[Fe] = 20 mg.L-1 

[H2O2]= 100 mg.L-1 

90% in 180 min 

Volvi lake water [DOC] 16 mg.L-1 
[ATE] 20 mg.L-1 
[Fe] = 20 mg.L-1 

[H2O2]= 100 mg.L-1 

85% in 180 min 

El-Hanafi et al. 
(2014) 

Electro Fenton Aqueous solution [ATE] 0,17 mM 
pH = 3 

[Fe] 5 mM 
[H2O2]= electro generation 

87% 
Time N.I. 

Ibuprofen (IBU) Skoumal et al. 
(2009) 

Electro-Fenton, 
UVA Photo-

Electro-Fenton, 
and Photo-

Electro-Fenton 
Solar 

Aqueous solution pH = 3 
[Fe] = 0.5 mM 

 

Electro-Fenton 
100% in 40 min 

UVA Photo-
Electro-Fenton 
100% in 40 min 

Photo-electro-
Fenton Solar 

100% in 20 min 

Klamerth et al. 
(2012) 

Photo-Fenton 
solar 

EDDS pH neutral 

WWTP tertiary 
effluent 

pH = 6.7 
[H2O2] = 50 mg.L-1 

[Fe] = 5 mg.L-1 

81% in 60 min 

Loaiza-Ambuludi et 
al. (2013) 

Electro-Fenton 
graphite felt 

cathode 

Aqueous solution pH = 3 
[Fe] = 0,2 mM 
[IBU] 0.2 mM 

100% in 20 min 
Intermediate 
compounds 
identified 

Monteiro et al. 
(2018) 

Photo-Fenton 
with UV lamp 

Aqueous solution [H2O2] = 28.0 mg.L-1 
[Fe] = 4.4 mg.L-1 

t = 360 min 

93,35% 
COD = 91% 
TOC = 90 % 

Zhou et al. (2018a) Electro-Fenton Aqueous solution pH = 3 
[Fe] = 40 mg.L-1 

[H2O2]= electro generation 

floating cathode 
100% in 60 min 

Conventional 
submerged 

cathode 
100% in 120 min 

pH = 3 
[Fe] = 70 mg.L-1 

[H2O2]= electro generation 

Alternating 
current 

100% in 60 min 

constant current 
100% in 100 min 



  
 

548 

http://dx.doi.org/10.22201/iingen.0718378xe.17.3.86162 
Vol. 17, No.3, 535-564  

Diciembre 2024 

Table 2. Information about the Fenton process for studied drugs (continues) 

Drug Reference Process Used Matrix Operational 
conditions 

Removal (%), time 
(min) 

Nadais et al. (2018) Bio-Electro-
Fenton 

Actual effluent after 
secondary biological 
treatment. Filtered 

and doped with 
drugs 

pH = 3 
[Fe] = 5 mM 

[H2O2]= electro generation 

86% in 11 hours 
Presence of 

different 
compounds in the 
effluent affect IBU 

oxidation 

Lui et al. (2018) Heterogeneous 
Electro-Fenton 

Aqueous solution Homogeneous Electro-
Fenton 
pH = 3 

[H2O2]= electro generation 

Homogeneous 
Electro-Fenton 
90% in 60 min 

Heterogeneous Electro-
Fenton using Cit-Fe/ACFs 

pH = 6.8 
[H2O2]= electro generation 

Heterogeneous 
Electro-Fenton 

using Cit-Fe/ACFs 
97% in 120 min 

Darie & Carja (2018) Photo-Fenton 
Heterogeneous 

with Fe 
impregnated in Zn 

(LDH) 

Aqueous solution pH =8,5 
[H2O2] = 100 mg.L-1 

82% (solar 
radiation) in 4.5 

hours 

Guettaia et al. 
(2018) 

Photo-Fenton 
heterogeneous 

iron in 
mesoporous silica 

Aqueous solution [IBU] 50 mg.L-1 
pH = 11 

[H2O2] = 3,85 mg.L-1 
[Fe] = 0.25 g.L-1 

80% IN 210 min 
TOC = 10% 

Adityosulindro et al. 
(2018) 

Fenton 
heterogeneous 

Fe-zeolite catalyst 

Aqueous solution pH = 3,3 
[H2O2] = 6,4 

mm 
Catalyst:4.8 g.L-1 

3 hours of reaction 
pH = 3.3 to 3.4l 

[IBU] 88% IN 180 
min 

[TOC} 27% 

Chen et al. (2018) Fenton, Photo-
Fenton, 

Photo/TiO2/Fento
n (PCF) 

Aqueous solution [IBU] 0.15 mmol.L-1 
pH= 7 

[H2O2] = 0.05 mmol.L-1 
[Fe2+] = 0.05 mmol.L-1 

 

30 min reaction: 
Fenton: 90% 

Photo-Fenton: 
60% 

PCF: 97% 

[IBU] 0.15 mmol.L-1 
[Fe2+] fixed 

[Fe2+]: [H2O2] mmol.L-1 
 = 350 ηm 

[Fe2+]: [H2O2] 
0.05:0.1- 90% 
0.05:0.5 - 92% 
0.05:2 – 98% 

[IBU] 0.15 mmol.L-1 
[H2O2

+] fixed 
[Fe2+]: [H2O2] mmol.L-1 

 = 350 ηm 

[Fe2+]: [H2O2] 
0.05:0.50- 97% 
0.20:0.5 - 97% 
20.0:0.5 – 97% 

Ayoub et al. (2018) Photo Fenton 
heterogeneous 

Waters of the 
Meurthe River, 

France 

pH=: 5,5 
[H2O2] = 0.007 M 
[Fe]=1000 mg.L-1 

95% in 30 min and 
6 hours 

Herghelegiu et al. 
(2018) 

Homogeneous 
Fenton and 

Photo-Fenton 

Aqueous solution pH = 3 
[Fe]/[H2O2] =1.25 v/v 

 

homogeneous 
Fenton 

85.98% in 30 min 
 

photo-Fenton 
88.52% in 30 min 



  
 

549 

http://dx.doi.org/10.22201/iingen.0718378xe.17.3.86162 
Vol. 17, No.3, 535-564  

Diciembre 2024 

Table 2. Information about the Fenton process for studied drugs (continues) 

Drug Reference Process Used Matrix Operational 
conditions 

Removal (%), time 
(min) 

Dekkiche et al. 
(2019) 

Photo-Fenton Aqueous solution pH= 2.8 
[H2O2] = 1.0·10−3 M 

[Fe] = 0.3 mM 

98% in 90 min 
Mineralization 

Zhou et al. (2019) Electro-Fenton Aqueous solution pH= 7 
[Fe] =10 mg.L-1 

[H2O2]= electro Generation 

Modified Felt 
Graphite 

75.3% in 100 min 
graphite Felt 
unmodified 

57.6% in 100 min 

Ayoub et al. (2019) Photo-Fenton River surface water, 
downstream of 

WWTP, Collections: 
Mar/2017, 
Oct/2016 

pH= 4 
[H2O2]/[Fe] = 0.4 

 
2016 

TOCi = 4.36 mg.L-1 
pH = 7.32 

2017 
pH = 7.26 

March/2017 
6 h of reaction: 93 

to 100% 
 

October/2016 
OCD 

30 min: 2.65 mg.L-

1 
6h: 2.44 mg.L-1 

6 h of reaction: 93 
to 100% 

Dong et al. (2019) Neutral Photo-
Fenton, Catalyst: 

Ferric-
nitrilotriacetate 

complex FeIII-NTA 

Real effluent after 
aerated biological 

filter, enriched, final 
concentration of 
450-500 µg.L-1 of 

each drug 

pH 7, [H2O2] 1 mM, [Fe] 
0.05 mM, [IBU] 450-500 

µg.L-1 

Fenton: 50%, 
Photo-Fenton 

>92% in 
continuous mode. 
Residence time 2 

hours 

Legend: TOC – total organic carbon; DOC – disolved organic carbon; [HTZ] – hydrochlorothizide; EDDS – Ethylenediamine-N,N′-
disuccinic acid; LD – Detection limit; ASS – acetylsalicylic acid; LOS – losartan potassium; WTP – wastewater treatment plants; 
ATE – atenolol; FUR – furosemida; IBU – ibuprofen; i – initial. 

 
 
The total mineralization of the studied compounds does not occur in most experiments, although 
the removal rate achieved in the evaluated studies is above 90% (Table 2). The total organic 
carbon (TOC) values make it possible to establish the degree of degradation of organic matter 
present in the studies, making it possible to evaluate the efficiency of the AOPs. 
 
One of the factors that can affect the drugs rate degradation is the presence of other sources of organic 
matter. The drug is composed of the active ingredient and the excipients to obtain the final formulation. 
Thus, there is the possibility of a removal of 100% of the drug, but not obtaining the same percentage 
for the removal of total organic matter as excipients, metabolites and degradation products can remain 
in the solution. In the study of Yang (2018) there was a 100% removal of the ASA, however, the TOC 
reduced only to 62%. This indicates the presence of non-degradable organic substances in the reaction 
condition and/or the formation of intermediate ASA degradation products. In the study by Méndez-
Arriaga (2010) the degradation of ibuprofen was evaluated by Fenton and photo-Fenton processes with 
UV. The Photo-Fenton process obtained a removal of 40% of TOC, while in the Fenton process only 10% 
of removal was achieved. Monteiro (2018) applied the photo-Fenton process to IBU, with removal of 
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93% of the drug and 90% of TOC, in addition to reducing the toxicity of the solutions evaluated by seed 
germination test. Using electro-Fenton with iron citrate, at pH 6.8, Lui (2018) obtained an IBU removal 
of 89% in 60 min and 96% in 120 min. The results of electro-Fenton with FeSO4 or IBU iron citrate 
showed similar values, with the difference in the need for neutralization of the solution made with 
FeSO4 for release, generating a precipitation of iron hydroxide sludge. 
 
Another factor that affects drug degradation is the composition of the matrix. In simple matrices, 
formed by the active ingredient of the drug and deionized water, the interferences are lower in 
relation to the matrices containing the excipients. The real effluents have a higher organic load, which 
leads to the consumption of the reagents used in the reaction, reducing the efficiency of the process. 
When using the photo-Fenton process for the degradation of equal concentrations of eight drugs, 
after 60 minutes, the ibuprofen removal efficiency was 70, 58 and 40% for three types of samples: 
ultrapure water, water from Lake Geneva, Switzerland, and the effluent from the local water 
treatment plant, Lausanne, respectively. The lower degradation achieved in effluent samples 
(WTP) may be related to the competition of hydroxyl radicals by competing compounds such as 
carbonates, chlorides and humics substances present in the effluent. Furthermore, the absorption 
of UV light is decreased by the higher turbidity of these samples (Neamţu et al. 2014). 
 
The evaluation of furosemide degradation (FUR) was associated with seven other drugs 
(gemfibrozil, nimesulide, paracetamol, propranolol, dipyrone, fluoxetine, and diazepam), with the 
application of heterogeneous Fenton and heterogeneous photo-Fenton Solar and different 
matrices: ultrapure water, simulated hospital effluent and real hospital effluent (Porto 
Alegre/Brazil). The removal efficiency obtained for FRU in the three matrices was 95% after 1 
minute of reaction. It was observed only FUR and diazepam had their molecules completely 
broken down, leaving 30% of integrated propranolol molecules. The other drugs ended up with 
60 to 70% of their molecules intact at the end of the 120-minute treatment process. They also 
sought to evaluate the degradation products formed (Cuervo Lumbarque et al, 2018). 
 
Using the Solar Photo-Fenton Like method (Cuervo Lumbarque et al., 2019b) and a modified 
catalyst, the Fe(III)/EDDS complex (EDTA structural isomer) became possible to perform the tests 
at pH 7. The assays were optimized with ultrapure water and drugs, and later these conditions 
were adopted for synthetic effluents. In distilled water FUR was degraded with 7.5 min, and in 
the synthetic effluent with 12.4 min (Cuervo Lumbarque et al., 2019a). 
 
The combination of the electrochemical process with the oxidation promoted by the Fenton reaction 
amplifies the oxidative potentials in the degradation processes. Five of the most used drugs in Belo 
Horizonte were treated using this technique, in several studies, as shown in Table 2 (Ma et al. 2016; 
Yang et al. 2018; Olvera-Vargas et al. 2016; Olvera-Vargas et al. 2018; Isarain-Chávez et al. 2011;            
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El-Hanafi et al. 2014; Loaiza-Ambuludi et al. 2013; Zhou et al. 2018a; Zhou et al. 2018b; Lui et al. 2018; 
Zhou et al. al. 2019). 
 
According to Zhou (2018a), when performing the Electro-Fenton process comparing the use of a 
floating method and a conventionally submerged cathode, the floating cathode proved to be 
more efficient. To achieve 100% removal of the drug Ibuprofen, under the initial conditions of pH 
3 and iron concentration equal to 40 mg.L-1, it took 60 and 120 minutes, respectively, for the 
floating and submerged cathode. Furthermore, for 120 minutes the removal of TOC presented by 
the first was 78.3%, while by the second it was 25.4%. Removing TOC with floating cathode may 
indicate good applicability for this Fenton option.  
 
In the ibuprofen degradation study, Zhou (2019) sought to establish the removal efficiency through 
an Electro-Fenton in aqueous solution using modified graphite fiber and unmodified graphite fiber 
(pH 3, [Fe2+] 10 mg L-1). The process with modified graphite fiber had 75.3% efficiency, and with 
unmodified fiber electrode had 57.6%, with continuous flow reaction, after 100 minutes. The 
modified process favors electron and mass transfer between electrodes and electrolytes leading to 
higher generation of H2O2, with increased process efficiency (Zhou et al. 2019). 
 
In an Electro-Fenton process, the analysis of the effect of alternating or direct current on the 
efficiency of ibuprofen degradation was studied. When using alternating current, a significant 
increase in the generation of H2O2 was observed in relation to that generated with direct current, 
with TOC removal at 120 minutes of 89.3% and 59.5%, respectively (Zhou et al. 2018b). By using 
the Electro-Fenton process peroxide generation is produced in the electrolyte cell and may be a 
treatment system with lower reagent consumption. 
 
The association of techniques in the effluent treatment process has transformed into a search for 
options to improve the efficiency of the removal of emerging recalcitrant pollutants, as well as 
their degradation products formed during the processes used (Zhou et al., 2019, Zhou et al., 
2018b, Cuervo Lumbarque et al., 2019a, Dong et al, 2019, Chen et al., 2018, Adityosulindro et al., 
2018, Guettaia et al., 2018, Klamerth et al.,2013). 
 
Antihypertensive drugs, inhibitors of the renin-angiotensin-aldosterone system, have been found in 
sanitary effluents, rivers, and lake water columns (Fonseca et al. 2020; Golovko et al. 2020; Kot-Wasik 
et al. 2016). For this purpose, tests were conducted using electro-Fenton and photo-electro-Fenton, 
seeking to degrade losartan and valsartan, at pH close to neutral. Light emitting diodes (LED) were 
used as light source. The degradation obtained with photo-electro-Fenton was more efficient for 
drugs and led to increased biodegradability after this treatment (Martínez-Pachón et al. 2019). 
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Klamerth (2012) conducted a pilot-scale study using the effluents from the ETE of Almería, Spain. 
Photo-Fenton and modified Photo-Fenton degradation tests were performed at neutral pH with 
two complexing reagents. Among the 60 drugs identified were atenolol and hydrochlorothiazide 
furosemide. Atenolol presented less than 5% residual concentration, using photo-Fenton at 
neutral pH, while furosemide and hydrochlorothiazide did not present residual concentrations. 
Degradation products and metabolites were not focuses of this research (Klamerth et al., 2012). 
 
When comparing Photo-Fenton and Fenton, the first presents, in some studies, a higher removal 
efficiency than conventional Fenton, this is a consequence of the generation of OH radicals 
through the photo-reduction of ferric ions, through the addition of ultraviolet light. In this study, 
the removal efficiency of ibuprofen was 66% by Photo-Fenton and 57% by traditional Fenton 
(Chen et al, 2018). In Herghelegiu work (2018) the results were higher, with efficiency of 89% and 
86% for Photo-Fenton and Fenton, respectively, for the same drug. The difference was not 
significant in this last study, making it necessary to evaluate the energy costs involved. These 
differences in the efficiency of ibuprofen degradation may be associated with the pH used by the 
studies: Chen et al (2018) worked at acid pH, different from the alkaline pH adopted in 
Herghelegiu in his study (2018). 
 
Li (2013) used traditional Fenton (with Fe2+) and Fenton-Like (Fe3+) to degrade Atenolol and 18 
other substances present in WWTP (USA) samples, keeping the pH 3 and iron concentration at 20 
mg L-1 and molar ratio of H2O2/Fe (2+/3+) of 2.5. To achieve the same removal efficiency of 99%, 
the reaction time for Fenton-Like was four times longer. For a Fenton reaction, with the addition 
of half Fe2+, the same removal occurred with 30 minutes, showing to be more efficient and 
economical (Li et al, 2013). 
 
Application of Fenton process and its derived techniques in effluent polishing 
The implementation of a post-treatment system by AOP, in the secondary effluent of an WTP, 
Local, in Spain, Arzate et al. (2017) studied the gain in increasing the hydraulic retention time 
(HRT). A continuous Solar Photo-Fenton process was used, and for a 20, 40, and 80 minute HRT 
the hydrochlorothiazide drug removal rate was 93%, 96% and 98%, respectively. 
 
This type of study can indicate ways to be implemented in the final polishing of sanitary effluents, 
aiming to obtain a reduction in the release of emerging contaminants into the environment. 
 
WTPs use biological treatment processes for raw effluents, which remove simple organic matter. 
The secondary effluent produced in this first treatment has recalcitrant organic compounds, such 
as drugs. 
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Seeking a polishing of the WTP effluent in Spain, Arzate et al. (2017) assessed the implementation 
of a post-treatment system by AOP. Hydraulic retention times (HRT) were evaluated with the 
implementation of a continuous Photo-Fenton Solar process. The hydrochlorothiazide removal 
rate was 93%, 96% and 98%, respectively, for HRT of 20, 40 and 80 minutes. 
 
The results obtained in this research are indicative that the implementation of AOP as a stage in 
the final polishing of sanitary effluents, can lead to a reduction in the release of emerging 
contaminants into the environment. 
 
Among the evaluated processes, it was observed that the Photo-Fenton solar process at pH 3 
exhibited superior efficiency. For instance, tests with real effluents demonstrated a removal rate 
of above 99% for HTZ (Arzarte et al, 2017) and close to 100% for FUR (Klamerth et al, 2012), while 
exceeding 80% for ATE (Neamtu et al., 2014, Veloutsou, Bizani & Fytianos, 2014), and achieving 
nearly 100% removal for IBU (Ayoub et al. 2019). However, it is worth noting that a drawback of 
these processes is the necessity to neutralize the solution for final disposal.  
 
Other processes are conducted at pH close to neutral, using iron sources from organic complexes. 
HTZ, IBU, and FUR were degraded above 90% under these conditions (Klamerth et al, 2012). 
Processes involving carbon fiber electrodes, catalytic processes with titanium, or zeolites 
exhibited remarkably high removal rates. It is essential to consider the investment costs for 
acquiring the system and its operational maintenance. 
 
The analysis of process efficiencies should be directed towards implementing these treatments 
for real effluents under conditions that can be rapidly implemented, achieving significant removal 
at a lower operational cost. 
 
 
Conclusion 
It was found in the literature that degradation processes using Fenton reaction were applied to 6 
drugs among the 10 most frequently used in Belo Horizonte. Among the most studied drugs are 
ibuprofen, atenolol, and furosemide. The traditional Fenton reaction has been modified to speed 
up the process and make it more efficient and cleaner, reducing waste formation. Modified 
processes such as photo Fenton and electron-Fenton showed good results for drug degradation. 
In general, the studies showed higher efficiency in the removal of recalcitrant drugs than 
conventional treatments of sanitary and/or industrial effluents. The analysis of degradation 
products generated during the Fenton reaction has scarcely been done still, even less than the 
determination of total organic carbon. These two parameters increase the reliability in the 
degradation of emerging contaminants. 
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It's crucial to note that the majority of drug degradation studies highlighted in this review are 
conducted on a bench scale, typically within research laboratories and universities. These studies 
often use post-treatment effluents, where the organic load has been significantly reduced 
through filters or biological treatments. While these bench-scale studies are valuable for 
optimizing reaction conditions, it's essential to recognize their limitations. 
 
To comprehensively evaluate real effluents from wastewater treatment plants, it becomes 
necessary to assess not only the drugs but also their metabolites and degradation by-products, 
as these substances may carry toxicities. Transitioning from isolated laboratory systems to real-
world conditions is a critical step in understanding the broader environmental implications. 
 
Therefore, while studies in research settings are indispensable for optimizing reaction conditions, 
they serve as a foundation for the eventual application and adaptation of these processes to more 
complex matrices, mirroring real-world conditions. This ensures a holistic understanding of the 
efficacy and potential environmental impacts of drug degradation processes. 
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